CRISPR-Cas9-Based Genome Editing of Banana

Part of the Springer Protocols Handbooks book series (SPH)


Genome editing is an emerging powerful new breeding tool, which can be applied for genetic improvement of banana for important agronomic traits such as resistance to biotic stresses, adaptation to climate change, and high yielding. Banana is an important staple food and cash crop, feeding millions of people in tropical and subtropical countries. Recently, CRISPR-Cas9-based genome editing system has been established for banana in a few laboratories. Here, we describe the procedures for generation of genome-edited events of banana, detection of targeted and potential off-target mutations, and phenotyping for important traits such as disease resistance. This chapter will provide readers strategy for applying CRISPR-Cas9-based genome editing for improvement of banana.

Key words

Banana Genome editing CRISPR-Cas9 gRNA 


  1. 1.
    FAOSTAT Agriculture Data (2018). Available online at: Accessed on 5th March 2019
  2. 2.
    Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 5:389–400Google Scholar
  3. 3.
    Maeder ML, Thibodeau-Beganny S, Osiak A et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:6769Google Scholar
  5. 5.
    Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralGoogle Scholar
  6. 6.
    Li T, Huang S, Jiang WZ et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedGoogle Scholar
  7. 7.
    Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148PubMedGoogle Scholar
  8. 8.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralGoogle Scholar
  11. 11.
    Weinthal DM, Gürel F (2016) Plant genome editing and its applications in cereals. In: Jamal F (ed) Genetic engineering. Intech Open.
  12. 12.
    Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33:41–52Google Scholar
  13. 13.
    Scheben A, Wolter F, Batley J et al (2017) Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol 216:682–669PubMedGoogle Scholar
  14. 14.
    Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Nat Acad Sci U S A 109:15539–15540Google Scholar
  15. 15.
    Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Nat Acad Sci U S A 112:3570–3575Google Scholar
  16. 16.
    Kaur N, Alok A, Shivani et al (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18: 89–99Google Scholar
  17. 17.
    Naim F, Dugdale B, Kleidon J et al (2018) Gene editing the phytoene desaturase alles of Cavendish banana using CRISPR/Cas9. Trans Res 27:451–460Google Scholar
  18. 18.
    Ntui VO, Tripathi JN, Tripathi L (2020) Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Curr Plant Biol. 100128.
  19. 19.
    Droc G, Lariviere D, Guignon V et al (2013) The banana genome hub. J Biol Databases Curation: bat035.
  20. 20.
    Lowder LG, Zhang D, Nicholas J et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985PubMedPubMedCentralGoogle Scholar
  21. 21.
    Tripathi JN, Muwonge A, Tripathi L (2012) Efficient regeneration and transformation protocol for plantain cv. ‘Gonja Manjaya’ (Musa spp. AAB) using embryogenic cell suspension. In Vitro Cell Dev Biol Plant 48:216–224Google Scholar
  22. 22.
    Tripathi JN, Oduor RO, Tripathi L (2015) A high-throughput regeneration and transformation platform for production of genetically modified banana. Front Plant Sci 6:1025PubMedPubMedCentralGoogle Scholar
  23. 23.
    Escalant J-V, Teisson C, Cote FX (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In-Vitro Cell Dev Biol 30P:181–118Google Scholar
  24. 24.
    Cote FX, Domergue R, Monmarson S et al (1996) Embryogenic cell suspension from the male flowers of Musa AAA cv. Grand nain. Physiol Plant 97:285–290Google Scholar
  25. 25.
    Navarro C, Escobedo RM, Mayo A (1997) In-vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tis Org Cult 57:17–25Google Scholar
  26. 26.
    Grapin A, Ortíz J-L, Lescot T et al (2000) Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell Tis Org Cult 61:237–244Google Scholar
  27. 27.
    Strosse H, Schoofs H, Panis B et al (2006) Development of embryogenic cell suspensions from shoot meristematic tissue bananas and plantains (Musa spp.). Plant Sci 170:104–112Google Scholar
  28. 28.
    Panis B, Wauwe AV, Rony Swennen R (1993) Plant regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.). Plant Cell Rep 12:403–407PubMedGoogle Scholar
  29. 29.
    Assani A, Haicour R, Wenzel G et al (2001) Plant regeneration from protoplasts of dessert banana cv. Grande Naine (Musa spp., Cavendish sub-group AAA) via somatic embryogenesis. Plant Cell Rep 20:482–488Google Scholar
  30. 30.
    den Dulk-Ras A, Hooykaas PJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickoloff JA (ed) Plant cell electroporation and electrofusion protocols. Methods in molecular biology, vol 55. Springer, Totowa, NJGoogle Scholar
  31. 31.
    Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotech 33:1162–1164Google Scholar
  32. 32.
    Malnoy M, Viola R, Jung M-H et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904PubMedPubMedCentralGoogle Scholar
  33. 33.
    Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274PubMedPubMedCentralGoogle Scholar
  34. 34.
    Liang Z, Chen KL, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralGoogle Scholar
  35. 35.
    Kanchiswamy CN, Malnoy M et al (2017) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491Google Scholar
  36. 36.
    Tripathi L, Ntui VO, Tripathi JN (2019) Application of genetic modification and genome editing for developing climate smart banana. Food Energy Secur:e00168Google Scholar
  37. 37.
    Altpeter F, Springer NM, Bartley LE et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520PubMedPubMedCentralGoogle Scholar
  38. 38.
    Becker DK, Dugdale B, Smith MK et al (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234PubMedGoogle Scholar
  39. 39.
    Sagi L, Remy S, Vereist B et al (1995) Transient gene expression in transformed banana (Musa cv. Bluggoe) protoplasts and embryogenic cell suspensions. Euphytica 85:89–95Google Scholar
  40. 40.
    Ganapathi TR, Higgs NS, Balint-Kurti PJ et al (2001) Agrobacterium-mediated transformation of the embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162PubMedGoogle Scholar
  41. 41.
    Ghosh A, Ganapathi TR, Nath P et al (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tis Org Cult 97:131–139Google Scholar
  42. 42.
    Khanna H, Becker D, Kleidon J et al (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady Finger AAB). Mol Breed 14:239–252Google Scholar
  43. 43.
    Kosky RG, Chong-Pérez B, López-Torres J et al (2010) Plantain (Musa spp. cv. ‘Navolean’ AAB) transgenic plants from Agrobacterium tumefaciens-mediated transformation of embryogenic cell suspensions. Biotec Vegetal 10:209–218Google Scholar
  44. 44.
    Sagi L, Remy S, Panis B et al (1994) Transient gene expression in electroporated banana (Musa spp. cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep 13:262–266PubMedGoogle Scholar
  45. 45.
    Murovec J, Gucek K, Bohanec B et al (2018) DNA-Free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chuba PJ (2000) Software review: Vector NTI Suite. J Clin Lig Ass 23:3–4Google Scholar
  47. 47.
    Oliveros JC, Franch M, Tabas-Madrid D et al (2016) Breaking-Cas––interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nuc Acids Res 44(W1):W267–W271Google Scholar
  48. 48.
    Tripathi JN, Ntui VO, Ron M et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2:46PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tripathi L, Odipio J, Tripathi JN et al (2008) A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. Eur J Plant Pathol 121:9–19Google Scholar
  50. 50.
    Tripathi L, Mwaka H, Tripathi JN et al (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol Plant Path 11:721–731Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.International Institute of Tropical Agriculture (IITA)NairobiKenya

Personalised recommendations