Skip to main content

A Procedure to Design Guide RNA, Assemble Fragments, and Detect Mutation for Genome Editing in Flax

  • Protocol
  • First Online:
CRISPR-Cas Methods
  • The original version of this chapter was revised. This chapter was inadvertently published without mentioning the chapter authors and corresponding authors. The correction to this chapter can be found at https://doi.org/10.1007/978-1-0716-0616-2_16

Abstract

The game-changing molecular tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) has recently been developed as an effective genome-editing tool. It is used for targeted mutagenesis, whereby Cas9 enzyme creates a DNA double-strand break (DSB), which is then repaired by mutation-prone non-homologous end joining (NHEJ) repair system; consequently, the resulting DNA sequence collects mutations either through insertion or deletion of nucleotides. As there are already substantial challenges in the agricultural production, we are in need of highly efficient molecular tool such as CRISPR-Cas9 with detailed information so that the tool can be embraced and applied routinely. Flax (Linum usitatissimum L.) is one of the economically important crops; in this chapter, we provide a guideline to design guide RNA, assembly of DNA fragments, and a detailed protocol for protoplast isolation, transfection, and mutation detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 October 2020

    Correction to: Chapter 11 in: M. Tofazzal Islam, Pankaj K. Bhowmik and Kutubuddin A. Molla (eds.), CRISPR-Cas Methods, Springer Protocols Handbooks.

References

  1. Mohanta T, Bashir T, Hashem A, Abd_Allah E, Bae H (2017) Genome editing tools in plants. Genes 8:399

    Article  Google Scholar 

  2. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  3. Chapman JR, Taylor MRG, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    Article  CAS  Google Scholar 

  4. Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 4:639–648

    Article  CAS  Google Scholar 

  5. Lieber MR (2010) The mechanism of double-Strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  Google Scholar 

  6. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2:130–143

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N (2017) Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents. PLoS One 12:1–36

    Article  Google Scholar 

  8. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23:40–46

    Article  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337:816–821

    Article  CAS  Google Scholar 

  10. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257

    Article  CAS  Google Scholar 

  11. Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K et al (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502

    Article  Google Scholar 

  12. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    Article  CAS  Google Scholar 

  13. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  Google Scholar 

  14. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  15. David H, David A, Mateille T (1982) Evaluation of parameters affecting the yield, viability and cell division of Pinus pinaster protoplasts. Physiol Plant 56:108–113

    Article  CAS  Google Scholar 

  16. Roger D, David A, David HC (1996) Lmmobilization of flax protoplasts in agarose and alginate beads. Plant Physiol 112:1191–1199

    Article  CAS  Google Scholar 

  17. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  CAS  Google Scholar 

  18. Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ et al (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Adhikary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adhikary, D., da Costa Ribeiro Quintans, I.L.A., Bhowmik, P.K. (2020). A Procedure to Design Guide RNA, Assemble Fragments, and Detect Mutation for Genome Editing in Flax. In: Islam, M.T., Bhowmik, P.K., Molla, K.A. (eds) CRISPR-Cas Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0616-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0616-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0615-5

  • Online ISBN: 978-1-0716-0616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics