Skip to main content

Fabrication of Corneal Extracellular Matrix-Derived Hydrogels

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

Hydrogels derived from corneal extracellular matrix (ECM) represent a promising biomaterial for corneal repair and regeneration. To fabricate these hydrogels, first corneas need to be decellularized using repeated freeze-thaw cycles and nucleases to remove all nuclear and cellular components. The remaining corneal ECM is lyophilized to remove all water and milled into a fine powder. The ECM powder is weighed and dissolved in pepsin solution at a concentration of 20 mg/mL. Hydrogels are formed by neutralizing the pH of the solution and maintaining it at 37 °C until fibrillogenesis has occurred. Corneal stromal cells may be suspended throughout the hydrogel solution prior to gelation to generate a corneal stromal substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134(2):167–173. https://doi.org/10.1001/jamaophthalmol.2015.4776

    Article  PubMed  Google Scholar 

  2. Fernandez-Perez J, Ahearne M (2019) Influence of biochemical cues in human corneal stromal cell phenotype. Curr Eye Res 44(2):135–146. https://doi.org/10.1080/02713683.2018.1536216

    Article  CAS  PubMed  Google Scholar 

  3. Petroll WM, Miron-Mendoza M (2015) Mechanical interactions and crosstalk between corneal keratocytes and the extracellular matrix. Exp Eye Res 133:49–57. https://doi.org/10.1016/j.exer.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jester JV, Ho-Chang J (2003) Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res 77(5):581–592

    Article  CAS  Google Scholar 

  5. Lynch AP, O'Sullivan F, Ahearne M (2016) The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media. Exp Eye Res 151:26–37. https://doi.org/10.1016/j.exer.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  6. Hassell JR, Birk DE (2010) The molecular basis of corneal transparency. Exp Eye Res 91(3):326–335. https://doi.org/10.1016/j.exer.2010.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Massoudi D, Malecaze F, Galiacy SD (2016) Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res 363(2):337–349. https://doi.org/10.1007/s00441-015-2233-5

    Article  CAS  PubMed  Google Scholar 

  8. Meek KM (2009) Corneal collagen-its role in maintaining corneal shape and transparency. Biophys Rev 1(2):83–93. https://doi.org/10.1007/s12551-009-0011-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lynch AP, Wilson SL, Ahearne M (2016) Dextran preserves native corneal structure during decellularization. Tissue Eng Part C Methods 22(6):561–572. https://doi.org/10.1089/ten.TEC.2016.0017

    Article  CAS  PubMed  Google Scholar 

  10. Wilson SL, Sidney LE, Dunphy SE, Dua HS, Hopkinson A (2016) Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res 41(6):769–782. https://doi.org/10.3109/02713683.2015.1062114

    Article  CAS  PubMed  Google Scholar 

  11. Ahearne M, Lynch AP (2015) Early observation of extracellular matrix-derived hydrogels for corneal stroma regeneration. Tissue Eng Part C Methods 21(10):1059–1069. https://doi.org/10.1089/ten.TEC.2015.0008

    Article  CAS  PubMed  Google Scholar 

  12. Lu Y, Yao QK, Feng B, Yan CX, Zhu MY, Chen JZ, Fu W, Fu Y (2015) Characterization of a hydrogel derived from decellularized corneal extracellular matrix. J Biomater Tiss Eng 5(12):951–960. https://doi.org/10.1166/jbt.2015.1410

    Article  Google Scholar 

  13. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068

    Article  CAS  PubMed  Google Scholar 

  14. Kim H, Park MN, Kim J, Jang J, Kim HK, Cho DW (2019) Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng 10:2041731418823382. https://doi.org/10.1177/2041731418823382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim H, Jang J, Park J, Lee KP, Lee S, Lee DM, Kim KH, Kim HK, Cho DW (2019) Shear-induced alignment of collagen fibrils using 3d cell printing for corneal stroma tissue engineering. Biofabrication 11(3). https://doi.org/10.1088/1758-5090/ab1a8b

  16. Ahearne M, Coyle A (2016) Application of uva-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater 54:259–267. https://doi.org/10.1016/j.jmbbm.2015.09.035

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Perez J, Ahearne M (2019) Decellularization and recellularization of cornea: progress towards a donor alternative. Methods 171:86–96. https://doi.org/10.1016/j.ymeth.2019.05.009

  18. Fernandez-Perez J, Ahearne M (2019) The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep 9(1):14933. https://doi.org/10.1038/s41598-019-49575-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahearne M, Liu KK, El Haj AJ, Then KY, Rauz S, Yang Y (2010) Online monitoring of the mechanical behavior of collagen hydrogels: influence of corneal fibroblasts on elastic modulus. Tissue Eng Part C Methods 16(2):319–327. https://doi.org/10.1089/ten.TEC.2008.0650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 637460) and Science Foundation Ireland and Marie-Curie Action COFUND (grant no. 11/SIRG/B2104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ahearne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahearne, M., Fernández-Pérez, J. (2020). Fabrication of Corneal Extracellular Matrix-Derived Hydrogels. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics