Skip to main content

Approaching Protein-Protein Interactions in Membranes Using Single-Particle Tracking and Packing Coefficient Analysis

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 154))

Abstract

Molecules diffuse randomly in the plane of the plasma membrane due to membrane fluidity. However, interactions with other molecules may introduce noticeable changes in diffusion behavior such as a slowdown or immobilization by formation of complexes. As a consequence, the analysis of transitions between diffusive behaviors can provide effective rate constants of molecular interactions. Tracking the positions of labeled single molecules, i.e., using single-particle tracking (SPT), is particularly pertinent for this kind of studies. We provide here a step-by-step protocol for SPT experiments and analyses needed to estimate the effective rate constants of molecular interactions. Classical SPT data analyses using the mean square displacement provide the average diffusive behavior, thus precluding the analysis of transitions. We propose an alternative approach to overcome this problem, namely the packing coefficient (Pc) analysis. We illustrate the application of this method to the interactions of neurotransmitter receptors with their scaffolding proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kasai RS, Kusumi A (2014) Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol 27:78–86

    Article  CAS  Google Scholar 

  2. Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7:275–285

    Article  CAS  Google Scholar 

  3. Renner M, Wang L, Levi S, Hennekinne L, Triller A (2017) A simple and powerful analysis of lateral subdiffusion using single particle tracking. Biophys J 113:2452–2463

    Article  CAS  Google Scholar 

  4. Ehrensperger MV, Hanus C, Vannier C, Triller A, Dahan M (2007) Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys J 92:3706–3718

    Article  CAS  Google Scholar 

  5. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  Google Scholar 

  6. Specht CG, Grunewald N, Pascual O, Rostgaard N, Schwarz G et al (2011) Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J 30:3842–3853

    Article  CAS  Google Scholar 

  7. Renner M, Choquet D, Triller A (2009) Control of the postsynaptic membrane viscosity. J Neurosci 29:2926–2937

    Article  CAS  Google Scholar 

  8. Kneussel M, Loebrich S (2007) Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol Cell 99:297–309

    Article  CAS  Google Scholar 

  9. Grunewald N, Jan A, Salvatico C, Kress V, Renner M et al (2018) Sequences flanking the gephyrin-binding site of GlyRbeta tune receptor stabilization at synapses. eNeuro 5. https://doi.org/10.1523/ENEURO.0042-17.2018

  10. Biermann B, Sokoll S, Klueva J, Missler M, Wiegert JS et al (2014) Imaging of molecular surface dynamics in brain slices using single-particle tracking. Nat Commun 5:3024

    Article  CAS  Google Scholar 

  11. Renner M, Schweizer C, Bannai H, Triller A, Levi S (2012) Diffusion barriers constrain receptors at synapses. PLoS One 7:e43032

    Article  CAS  Google Scholar 

  12. Manzo C, Garcia-Parajo MF (2015) A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys 78:124601

    Article  Google Scholar 

  13. Serge A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    Article  CAS  Google Scholar 

  14. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  Google Scholar 

  15. Bartolome F, Abramov AY (2015) Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol 1264:263–270

    Article  CAS  Google Scholar 

  16. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  CAS  Google Scholar 

  17. Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys Rev E Stat Nonlinear Soft Matter Phys 82:041914

    Article  Google Scholar 

  18. Michalet X, Berglund AJ (2012) Optimal diffusion coefficient estimation in single-particle tracking. Phys Rev E Stat Nonlinear Soft Matter Phys 85:061916

    Article  Google Scholar 

  19. Renner M, Domanov Y, Sandrin F, Izeddin I, Bassereau P et al (2011) Lateral diffusion on tubular membranes: quantification of measurements bias. PLoS One 6:e25731

    Article  CAS  Google Scholar 

  20. Masson JB, Dionne P, Salvatico C, Renner M, Specht CG et al (2014) Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys J 106:74–83

    Article  CAS  Google Scholar 

  21. Cantaut-Belarif Y, Antri M, Pizzarelli R, Colasse S, Vaccari I et al (2017) Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord. J Cell Biol 216:2979–2989

    Article  CAS  Google Scholar 

  22. Simson R, Sheets ED, Jacobson K (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 69:989–993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche “Synaptune” (Programme blanc, ANR-12-BSV4-0019-01), the ERC advanced research grant “PlasltInhib,” the program “Investissements d’Avenir” (ANR-10-LABX-54 MEMOLIFE and ANR-11-IDEX-0001-02 PSL Research University), and the Institut National de la Santé et de la Recherche Médicale (INSERM). Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Renner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Renner, M., Triller, A. (2020). Approaching Protein-Protein Interactions in Membranes Using Single-Particle Tracking and Packing Coefficient Analysis. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics