Skip to main content

Nanocores and Liquid Droplets: Single-Molecule Microscopy of Neuronal Stress Granule Components

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 154))

Abstract

Stress granules (SGs) are the result of phase separation of different mRNAs and multivalent RNA-binding proteins. Their main function appears to adapt the translatome of a cell to adverse environmental conditions in a fast, adjustable, and reversible manner. While being highly dynamic during physiological conditions, SGs may also be precursors of more rigid aggregates that form during neuropathological processes. Thus, analysis of the localization and mobility of key stress granule components in neural cells is an important aspect to scrutinize the material state and dynamics of SGs that could also be of pathologic relevance. Here we describe an experimental approach to follow the distribution and dynamics of paradigmatic RNA-binding proteins (RBPs) by single-molecule imaging in chemically induced SGs of model neurons. Specifically, we provide detailed information about the preparation, differentiation, and labeling of the cells; image acquisition with a TIRF microscope in the highly-inclined laminar optical sheet (HILO) mode; and image processing for single-molecule localization and tracking. We describe an approach for quantitative determination of the fraction of bound and mobile molecules, determination of the lifetime of RBP binding in nanocores, and determination of the diffusion behavior of the respective proteins to provide information about the biophysical properties of the liquid phase of SGs. Our goal is to present to the reader guidelines on how to apply single-molecule microscopy and quantitative data analysis to determine the behavior of SG components in model neurons. Moreover, the approach should also be easily adjustable for the analysis of other biomolecular condensates with liquid-like properties and for the use of other cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  Google Scholar 

  2. Alberti S, Hyman AA (2016) Are aberrant phase transitions a driver of cellular aging? Bioessays 38:959–968

    Article  CAS  Google Scholar 

  3. Kroschwald S, Maharana S, Mateju D et al (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. elife 4:e06807

    Article  Google Scholar 

  4. Jain S, Wheeler JR, Walters RW et al (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498

    Article  CAS  Google Scholar 

  5. Niewidok B, Igaev M, Pereira Da Graca A et al (2018) Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules. J Cell Biol 217:1303–1318

    Article  CAS  Google Scholar 

  6. Kedersha N, Panas MD, Achorn CA et al (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845–860

    Article  CAS  Google Scholar 

  7. Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81

    Article  CAS  Google Scholar 

  8. Moschner K, Sundermann F, Meyer H et al (2014) RNA protein granules modulate tau isoform expression and induce neuronal sprouting. J Biol Chem 289:16814–16825

    Article  CAS  Google Scholar 

  9. Tourriere H, Chebli K, Zekri L et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160:823–831

    Article  CAS  Google Scholar 

  10. Coletta A, Pinney JW, Solis DY et al (2010) Low-complexity regions within protein sequences have position-dependent roles. BMC Syst Biol 4:43

    Article  Google Scholar 

  11. Uversky VN (2015) Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Front Aging Neurosci 7:18

    Article  Google Scholar 

  12. Garcia-Mayoral MF, Hollingworth D, Masino L et al (2007) The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15:485–498

    Article  CAS  Google Scholar 

  13. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  Google Scholar 

  14. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  Google Scholar 

  15. Appelhans T, Busch K (2017) Single molecule tracking and localization of mitochondrial protein complexes in live cells. Methods Mol Biol 1567:273–291

    Article  CAS  Google Scholar 

  16. Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Article  CAS  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  18. Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  Google Scholar 

  19. Serge A, Bertaux N, Rigneault H et al (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    Article  CAS  Google Scholar 

  20. Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20

    Article  CAS  Google Scholar 

  21. Wedeking T, Lochte S, Birkholz O et al (2015) Spatiotemporally controlled reorganization of signaling complexes in the plasma membrane of living cells. Small 11:5912–5918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lidia Bakota for critical reading and preparation of the schematic model. The work was supported by Deutsche Forschungsgemeinschaft Grant SFB 944, Project P1 (to R.B.), and the Z-project of the SFB. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niewidok, B., Kurre, R., Brandt, R. (2020). Nanocores and Liquid Droplets: Single-Molecule Microscopy of Neuronal Stress Granule Components. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics