Skip to main content

Stereolithography 3D Bioprinting

  • Protocol
  • First Online:
3D Bioprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2140))

Abstract

Stereolithography (SLA) 3D bioprinting has emerged as a prominent bioprinting method addressing the requirements of complex tissue fabrication. This chapter addresses the advancement in SLA 3D bioprinting in concurrent with the development of novel photocrosslinkable biomaterials with enhanced physical and chemical properties. We discuss the cytocompatible photoinitiators operating in the wide spectrum of the ultraviolet (UV) and the visible light and high-resolution dynamic mask projection systems with a suitable illumination source. The potential of SLA 3D bioprinting has been explored in various themes, like bone and neural tissue engineering and in the development of controlled microenvironments to study cell behavior. The flexible design and versatility of SLA bioprinting makes it an attractive bioprinting process with myriad possibilities and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Connell CD, Zhang B, Onofrillo C et al (2018) Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter 14:2142–2151

    Article  PubMed  Google Scholar 

  2. Colosi C, Shin SR, Manoharan V et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28:677–684

    Article  CAS  PubMed  Google Scholar 

  3. Koch L, Deiwick A, Chichkov B (2017) Laser additive printing of cells. In: Laser additive manufacturing. Elsevier, Amsterdam, pp 421–437

    Chapter  Google Scholar 

  4. Park JA, Yoon S, Kwon J et al (2017) Freeform micropatterning of living cells into cell culture medium using direct inkjet printing. Sci Rep 7:14610

    Article  PubMed  PubMed Central  Google Scholar 

  5. McAllister TN, Maruszewski M, Garrido SA et al (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446

    Article  PubMed  Google Scholar 

  6. L’heureux N, Pâquet S, Labbé R et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    PubMed  Google Scholar 

  7. Lin C-C, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643

    Article  CAS  PubMed  Google Scholar 

  8. Shirahama H, Lee BH, Tan LP, Cho NJ (2016) Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci Rep 6:1–11. https://doi.org/10.1038/srep31036

    Article  CAS  Google Scholar 

  9. Yue K, Trujillo-de Santiago G, Alvarez MM et al (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klotz BJ, Gawlitta D, Rosenberg AJWP et al (2016) Gelatin-Methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407. https://doi.org/10.1016/J.TIBTECH.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Kumar H, Tian Z et al (2018) Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces 10:26859–26869

    Article  CAS  PubMed  Google Scholar 

  12. Nichol JW, Koshy ST, Bae H et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim KS, Schon BS, Mekhileri NV et al (2016) New visible-light Photoinitiating system for improved print Fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2:1752–1762. https://doi.org/10.1021/acsbiomaterials.6b00149

    Article  CAS  PubMed  Google Scholar 

  14. Noshadi I, Hong S, Sullivan KE et al (2017) In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci 5:2093–2105. https://doi.org/10.1039/C7BM00110J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ovsianikov A, Deiwick A, Van Vlierberghe S et al (2010) Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials (Basel) 4:288–299. https://doi.org/10.3390/ma4010288

    Article  CAS  Google Scholar 

  16. Chen Y, Lin R, Qi H et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039. https://doi.org/10.1002/adfm.201101662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samanipour R, Wang Z, Ahmadi A, Kim K (2016) Experimental and computational study of microfluidic flow-focusing generation of gelatin methacrylate hydrogel droplets. J Appl Polym Sci 133:24–26. https://doi.org/10.1002/app.43701

    Article  CAS  Google Scholar 

  18. Wang Z, Abdulla R, Parker B et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009. https://doi.org/10.1088/1758-5090/7/4/045009

    Article  PubMed  Google Scholar 

  19. Raman R, Bashir R (2015) Chapter 6: Stereolithographic 3D bioprinting for biomedical applications. Elsevier Inc., Amsterdam

    Google Scholar 

  20. Soman P, Chung PH, Zhang AP, Chen S (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110:3038–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gauvin R, Chen YC, Lee JW et al (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–3834. https://doi.org/10.1016/j.biomaterials.2012.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin C, Ki CS, Shih H (2015) Thiol–norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci 132:pii: 41563

    Article  Google Scholar 

  23. Greene T, Lin TY, Andrisani OM, Lin CC (2017) Comparative study of visible light polymerized gelatin hydrogels for 3D culture of hepatic progenitor cells. J Appl Polym Sci 134:1–10. https://doi.org/10.1002/app.44585

    Article  CAS  Google Scholar 

  24. Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  25. Kharkar PM, Rehmann MS, Skeens KM et al (2016) Thiol–ene click hydrogels for therapeutic delivery. ACS Biomater Sci Eng 2:165–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hermanson GT (2013) Bioconjugate techniques. Academic Press, New York

    Google Scholar 

  27. Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513

    Article  CAS  PubMed  Google Scholar 

  29. Peng G, Wang J, Yang F et al (2013) In situ formation of biodegradable dextran-based hydrogel via Michael addition. J Appl Polym Sci 127:577–584

    Article  CAS  Google Scholar 

  30. McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromol Chem Phys 214:203–213

    Article  CAS  Google Scholar 

  31. Hao Y, Shih H, Muňoz Z et al (2014) Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomater 10:104–114

    Article  CAS  PubMed  Google Scholar 

  32. Shih H, Lin C (2013) Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol Rapid Commun 34:269–273

    Article  CAS  PubMed  Google Scholar 

  33. Qin X-H, Ovsianikov A, Stampfl J, Liska R (2014) Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMaterials 15:49–70. https://doi.org/10.1515/bnm-2014-0008

    Article  Google Scholar 

  34. Williams CG, Malik AN, Kim TK et al (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218. https://doi.org/10.1016/j.biomaterials.2004.04.024

    Article  CAS  PubMed  Google Scholar 

  35. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30:6702–6707. https://doi.org/10.1016/j.biomaterials.2009.08.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ullrich G, Burtscher P, Salz U et al (2006) Phenylglycine derivatives as coinitiators for the radical photopolymerization of acidic aqueous formulations. J Polym Sci Part A Polym Chem 44:115–125. https://doi.org/10.1002/pola.21139

    Article  CAS  Google Scholar 

  37. Bahney CS, Lujan TJ, Hsu CW et al (2011) Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cells Mater 22:43–55

    Article  CAS  Google Scholar 

  38. Popielarz R, Vogt O (2008) Effect of coinitiator type on initiation efficiency of two-component photoinitiator systems based on eosin. J Polym Sci Part A Polym Chem 46:3519–3532

    Article  CAS  Google Scholar 

  39. Li L, Fourkas JT (2007) Multiphoton polymerization. Mater Today 10:30–37

    Article  Google Scholar 

  40. Bártolo PJ (2011) Stereolithographic processes. In: Stereolithography. Springer, New York, pp 1–36

    Chapter  Google Scholar 

  41. Zhou C, Chen Y, Waltz RA (2009) Optimized mask image projection for solid freeform fabrication. J Manuf Sci Eng 131:061004. https://doi.org/10.1115/1.4000416

    Article  Google Scholar 

  42. Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A Phys 121:113–120. https://doi.org/10.1016/j.sna.2004.12.011

    Article  CAS  Google Scholar 

  43. Larson C, Shepherd R (2016) 3D bioprinting technologies for cellular engineering. In: Microscale Technologies for Cell Engineering. Springer, New York, pp 69–89

    Book  Google Scholar 

  44. Hornbeck LJ (1996) Multi-level digital micromirror device

    Google Scholar 

  45. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441. https://doi.org/10.1007/s10439-006-9156-y

    Article  PubMed  Google Scholar 

  46. Chan V, Zorlutuna P, Jeong JH et al (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062. https://doi.org/10.1039/c004285d

    Article  CAS  PubMed  Google Scholar 

  47. Zorlutuna P, Jeong JH, Kong H, Bashir R (2011) Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater 21:3642–3651. https://doi.org/10.1002/adfm.201101023

    Article  CAS  Google Scholar 

  48. Lee S-J, Nowicki M, Harris B, Zhang LG (2017) Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Eng Part A 23:491–502. https://doi.org/10.1089/ten.tea.2016.0353

    Article  CAS  PubMed  Google Scholar 

  49. Lee SJ, Kang HW, Park JK et al (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10:233–241. https://doi.org/10.1007/s10544-007-9129-4

    Article  CAS  PubMed  Google Scholar 

  50. Knowlton S, Anand S, Shah T, Tasoglu S (2017) Bioprinting for neural tissue engineering. Trends Neurosci 41:31. https://doi.org/10.1016/j.tins.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  51. Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomater 2(3):119–154

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lu Y, Mapili G, Suhali G et al (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res: Part A 77:396–405. https://doi.org/10.1002/jbm.a.30601

    Article  CAS  Google Scholar 

  53. Mapili G, Lu Y, Chen S, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res: Part B Appl Biomater 75:414–424. https://doi.org/10.1002/jbm.b.30325

    Article  CAS  Google Scholar 

  54. Shanjani Y, Pan CC, Elomaa L, Yang Y (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7:45008. https://doi.org/10.1088/1758-5090/7/4/045008

    Article  CAS  Google Scholar 

  55. Ma X, Qu X, Zhu W et al (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci 113:2206–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang AP, Qu X, Soman P et al (2012) Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24:4266–4270. https://doi.org/10.1002/adma.201202024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miri AK, Nieto D, Iglesias L et al (2018) Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater 30(27):e1800242

    Article  PubMed  Google Scholar 

  58. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20:314

    Article  CAS  Google Scholar 

  59. Lee K-S, Kim RH, Yang D-Y, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681

    Article  CAS  Google Scholar 

  60. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134

    Article  CAS  PubMed  Google Scholar 

  61. Ovsianikov A, Chichkov BN (2012) Three-dimensional microfabrication by two-photon polymerization technique. In: Computer-aided tissue engineering. Springer, New York, pp 311–325

    Chapter  Google Scholar 

  62. Serien D, Takeuchi S (2017) Multi-component microscaffold with 3D spatially defined proteinaceous environment. ACS Biomater Sci Eng 3:487–494. https://doi.org/10.1021/acsbiomaterials.6b00695

    Article  CAS  PubMed  Google Scholar 

  63. Ovsianikov A, Mühleder S, Torgersen J et al (2013) Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30:3787–3794

    Article  PubMed  Google Scholar 

  64. Warner J, Soman P, Zhu W et al (2016) Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomater Sci Eng 2:1763–1770. https://doi.org/10.1021/acsbiomaterials.6b00140

    Article  CAS  PubMed  Google Scholar 

  65. Bens A, Seitz H, Bermes G et al (2007) Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prototyp J 13:38–47. https://doi.org/10.1108/13552540710719208

    Article  Google Scholar 

  66. Huang Y, Zhang X-F, Gao G et al (2017) 3D bioprinting and the current applications in tissue engineering. Biotechnol J 2017:1600734. https://doi.org/10.1002/biot.201600734

    Article  CAS  Google Scholar 

  67. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  68. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504

    Article  CAS  Google Scholar 

  69. Izatt MT, Thorpe PLPJ, Thompson RG et al (2007) The use of physical biomodelling in complex spinal surgery. Eur Spine J 16:1507–1518

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chu TMG, Orton DG, Hollister SJ et al (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293. https://doi.org/10.1016/S0142-9612(01)00243-5

    Article  CAS  PubMed  Google Scholar 

  71. Zhu W, Qu X, Zhu J et al (2017) Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124:106–115. https://doi.org/10.1016/j.biomaterials.2017.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou X, Zhu W, Nowicki M et al (2016) 3D bioprinting a cell-laden bone matrix for breast Cancer metastasis study. ACS Appl Mater Interfaces 8:30017–30026. https://doi.org/10.1021/acsami.6b10673

    Article  CAS  PubMed  Google Scholar 

  73. Nasrollahi S, Pathak A (2016) Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci Rep 6:1–12. https://doi.org/10.1038/srep18831

    Article  CAS  Google Scholar 

  74. Peela N, Sam FS, Christenson W et al (2016) A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83. https://doi.org/10.1016/j.biomaterials.2015.11.039

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keekyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, H., Kim, K. (2020). Stereolithography 3D Bioprinting. In: Crook, J.M. (eds) 3D Bioprinting. Methods in Molecular Biology, vol 2140. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0520-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0520-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0519-6

  • Online ISBN: 978-1-0716-0520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics