Skip to main content

Bioprinting 3D Human Induced Pluripotent Stem Cell Constructs for Multilineage Tissue Engineering and Modeling

  • Protocol
  • First Online:
3D Bioprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2140))

Abstract

Bioprinting human pluripotent stem cells (PSCs) provides an opportunity to produce three-dimensional (3D) cell-laden constructs with the potential to be differentiated in vitro to all tissue types of the human body. Here, we detail a previously published method for 3D printing human induced pluripotent stem cells (iPSCs; also applicable to human embryonic stem cells) within a clinically amenable bioink (also described in Chapter 10) that is cross-linked to a 3D construct. The printed iPSCs continue to have self-replicating and multilineage cell induction potential in situ, and the constructs are robust and amenable to different differentiation protocols for fabricating diverse tissue types, with the potential to be applied for both research- and clinical-product development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Crook JM, Peura T, Kravets L, Bosman A, Buzzard JJ, Horne R et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  5. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM (2017) 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multi-lineage differentiation. Adv Healthc Mater 6:1700175

    Article  Google Scholar 

  6. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q et al (2016) Functional 3D neural mini-tissues from printed gel-based human neural stem cells. Adv Healthc Mater 5:1429–1438

    Article  CAS  PubMed  Google Scholar 

  7. Tomaskovic-Crook E, Zhang P, Ahtiainen A, Kaisvuo H, Lee CY, Beirne S et al (2019) Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv Healthc Mater 8(15):1900425

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge funding from the Australian Research Council (ARC) Centre of Excellence Scheme (CE140100012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy M. Crook or Eva Tomaskovic-Crook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crook, J.M., Tomaskovic-Crook, E. (2020). Bioprinting 3D Human Induced Pluripotent Stem Cell Constructs for Multilineage Tissue Engineering and Modeling. In: Crook, J.M. (eds) 3D Bioprinting. Methods in Molecular Biology, vol 2140. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0520-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0520-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0519-6

  • Online ISBN: 978-1-0716-0520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics