Skip to main content

Model for Studying the Effects of Chronic Metabolic Disease on Endogenous Bone Marrow Stem Cell Populations

  • Protocol
  • First Online:
Clinical and Preclinical Models for Maximizing Healthspan

Abstract

Disease-associated impairment/dysfunction of stem cell populations is prominent in chronic metabolic and inflammatory diseases, such as type 2 diabetes mellitus (DM) where the multifunctional properties (viability, proliferation, paracrine secretion, multilineage differentiation) of bone marrow resident mesenchymal stem cells (MSCs) can be affected. The growth and viability impairments make it difficult to study the underlying molecular mechanisms related to the dysfunction of these cells in vitro. We have consequently optimized the isolation and culture conditions for impaired/dysfunctional bone marrow MSCs from B6.Cg-Lepob/J obese prediabetic mice. The method described here permits ex vivo investigations into disease-associated functional impairments and the dysregulated molecular mechanisms in these primary MSCs through direct comparisons with their healthy wild-type C57BL6/J control mouse counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  CAS  Google Scholar 

  2. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7843):327–334

    Article  CAS  Google Scholar 

  3. Schatteman GC (2004) Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol 64:141–180

    Article  CAS  Google Scholar 

  4. Polymeri A, Giannobile WV, Kaigler D (2016) Bone marrow stromal stem cells in tissue engineering and regenerative medicine. Horm Metab Res 48(11):700–713

    Article  CAS  Google Scholar 

  5. Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M et al (2019) Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep 46(1):1459–1475

    Article  CAS  Google Scholar 

  6. Kornicka K, Houston J, Marycz K (2018) Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev 14(3):337–345

    Article  Google Scholar 

  7. van de Vyver M (2017) Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev 26(14):1042–1053

    Article  Google Scholar 

  8. Mangialardi G, Madeddu P (2016) Bone marrow-derived stem cells: a mixed blessing in the multifaceted world of diabetic complications. Curr Diab Rep 16(5):43. https://doi.org/10.1007/s11892-016-0730-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van de Vyver M, Niesler C, Myburgh KH, Ferris WF (2016) Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Mol Cell Endocrinol 426:1–10

    Article  Google Scholar 

  10. Mehrbani Azar Y, Green R, Niesler CU, van de Vyver M (2018) Antioxidant preconditioning improves the paracrine responsiveness of bone marrow mesenchymal stem cells to diabetic wound fluid. Stem Cells Dev. https://doi.org/10.1089/scd.2018.0145

  11. Tan J, Zhou L, Zhou Y et al (2017) The influence of diabetes mellitus on proliferation and osteoblastic differentiation of MSCs. Curr Stem Cell Res Ther 12(5):388–400

    Article  CAS  Google Scholar 

  12. Bakopoulou A, Apatzidou D, Aggelidou E, Gousopoulou E, Leyhausen G, Volk J et al (2017) Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Res Ther 8(1):247. https://doi.org/10.1186/s13287-017-0705-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A (2010) Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 95(1):47–56

    Article  Google Scholar 

  14. Lu L, Song H-F, Zhang W-G, Liu XQ, Zhu Q, Cheng XL et al (2012) Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion. Biochem Biophys Res Commun 422(1):121–127

    Article  CAS  Google Scholar 

  15. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205(2):194–201

    Article  CAS  Google Scholar 

  16. Jackson Laboratories Mouse strain 000632

    Google Scholar 

  17. Batt RA, Everard DM, Gillies G, Wilkinson M, Wilson CA, Yeo TA (1982) Investigation into the hypogonadism of the obese mouse (genotype Ob/Ob). J Reprod Fertil 64(2):363–371

    Article  CAS  Google Scholar 

  18. Batt RA, Hambi M (1982) Development of the hypothermia in obese mice (genotype Ob/Ob). Int J Obes 6(4):391–397

    CAS  PubMed  Google Scholar 

  19. Rath EA, Thenen SW (1980) Influence of age and genetic background on in vivo fatty acid synthesis in obese (Ob/Ob) mice. Biochim Biophys Acta 618:18–27

    Article  CAS  Google Scholar 

  20. Dubuc PU (1976) The development of obesity, hyperinsulinemia, and hyperglycemia in Ob/Ob mice. Metab Clin Exp 25(1):1567–1574

    Article  CAS  Google Scholar 

  21. Boozer CN, Mayer J (1976) Effects of long-term restricted insulin production in obese-hyperglycemic (genotype Ob/Ob) mice. Diabetologia 12(2):181–187

    Article  CAS  Google Scholar 

  22. Ewart-Toland A, Mounzih K, Qiu J, Chehab FF (1999) Effect of the genetic background on the reproduction of leptin-deficient obese mice. Endocrinology 140(2):732–738

    Article  CAS  Google Scholar 

  23. Seitz O, Schürmann C, Hermes N, Müller E, Pfeilschifter J, Frank S et al (2010) Wound healing in mice with high-fat diet- or Ob gene-induced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res 2010:476969. https://doi.org/10.1155/2010/476969

    Article  CAS  PubMed  Google Scholar 

  24. Yu WH, Kimura M, Walczewska A et al (1997) Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A 94(3):1023–1028

    Article  CAS  Google Scholar 

  25. Cameron CM, Kostyo JL, Adamafio NA, Dunbar JC (1987) Metabolic basis for the diabetogenic action of growth hormone in the obese (Ob/Ob) mouse. Endocrinology 120(4):1568–1575

    Article  CAS  Google Scholar 

  26. Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143(1):3–14

    Article  CAS  Google Scholar 

  27. Sivula CP, Suckow MA (2018) Euthanasia. In: Weichbrod RH, Thompson GA, Norton JN (eds) Management of animal care and use programs in research, education, and testing, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, FL. ISBN-10: 9781498748445

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari van de Vyver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mehrbani Azar, Y. et al. (2020). Model for Studying the Effects of Chronic Metabolic Disease on Endogenous Bone Marrow Stem Cell Populations. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics