Skip to main content

MK-801 Treatment of Oligodendrocytes as a Cellular Model of Aging

  • Protocol
  • First Online:
Clinical and Preclinical Models for Maximizing Healthspan

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

Abstract

Cardiovascular-related accidents such as stroke are currently ranked as the second leading cause of death worldwide, and the risk of stroke increases dramatically with age. Aging results in structural and functional alterations of the oligodendrocytes which lead to loss of neuronal connectivity, cognitive deficits, and increased susceptibility to ischemic damage. Here, we have carried out proteomic profiling of MO3.13 oligodendrocyte cells following treatment with NMDA channel blocker MK-801 to increase our understanding of the mechanisms involved in brain aging, as well as those which render it more susceptible to ischemic damage. The main objective was to identify potential biomarkers which could be used to track disease or therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2012) Global Health estimates. World Health Organization, Geneva. http://www.who.int/healthinfo/global_burden_disease/en/

    Google Scholar 

  2. Owolabi MO, Akarolo-Anthony S, Akinyemi R, Arnett D, Gebregziabher M, Jenkins C et al (2015) The burden of stroke in Africa: a glance at the present and a glimpse into the future. Cardiovasc J Afr 26(2 Suppl 1):S27–S38

    Article  PubMed  PubMed Central  Google Scholar 

  3. American Heart Association Statistics Committee and Stroke, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220. https://doi.org/10.1161/CIR.0b013e31823ac046

    Article  Google Scholar 

  4. Brainin M, Feigin V, Bath PM, Collantes E, Martins S, Pandian J et al (2019) Multi-level community interventions for primary stroke prevention: a conceptual approach by the World Stroke Organization. Int J Stroke 9:1747493019873706. https://doi.org/10.1177/1747493019873706

    Article  Google Scholar 

  5. Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17(5):533–540

    Article  CAS  PubMed  Google Scholar 

  6. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97(10):5621–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ay H, Koroshetz WJ, Vangel M, Benner T, Melinosky C, Zhu M et al (2005) Conversion of ischemic brain tissue into infarction increases with age. Stroke 36(12):2632–2636

    Article  PubMed  Google Scholar 

  8. Baltan S, Besancon EF, Mbow B, Ye Z, Hamner MA, Ransom BR (2008) White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 28(6):1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baltan S (2014) Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv Neurobiol 11:151–170

    Article  PubMed  PubMed Central  Google Scholar 

  10. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439(7079):988–992

    Article  CAS  PubMed  Google Scholar 

  11. Teyler TJ (1987–1988) Long-term potentiation and memory. Int J Neurol 21-22:163–171

    PubMed  Google Scholar 

  12. Peters A (1966) The node of Ranvier in the central nervous system. Q J Exp Physiol Cogn Med Sci 51(3):229–236

    CAS  PubMed  Google Scholar 

  13. Baltan S (2016) Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110(Pt B):626–632

    Article  CAS  PubMed  Google Scholar 

  14. Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-De-Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13(5):893–897

    Article  CAS  PubMed  Google Scholar 

  15. Klement K, Melle C, Murzik U, Diekmann S, Norgauer J, Hemmerich P (2012) Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech Ageing Dev 133(7):508–522

    Article  CAS  PubMed  Google Scholar 

  16. Mennecier F, Dreyfus JC (1974) Molecular aging of fructose-bisphosphate aldolase in tissues of rabbit and man. Biochim Biophys Acta 364(2):320–326

    Article  CAS  PubMed  Google Scholar 

  17. Morohoshi K, Ohbayashi M, Patel N, Chong V, Bird AC, Ono SJ (2012) Identification of anti-retinal antibodies in patients with age-related macular degeneration. Exp Mol Pathol 93(2):193–199

    Article  CAS  PubMed  Google Scholar 

  18. Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y (2019) The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 118:9–18

    Article  CAS  PubMed  Google Scholar 

  19. Csiszar A, Wang M, Lakatta EG, Ungvari Z (1985) Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 105(4):1333–1341

    Article  CAS  Google Scholar 

  20. Boraldi F, Bini L, Liberatori S, Armini A, Pallini V, Tiozzo R et al (2003) Proteome analysis of dermal fibroblasts cultured in vitro from human healthy subjects of different ages. Proteomics 3(6):917–929

    Article  CAS  PubMed  Google Scholar 

  21. McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30(2):99–124

    Article  CAS  PubMed  Google Scholar 

  22. Doria G, Frasca D (2000) Genetic factors in immunity and aging. Vaccine 18(16):1591–1595

    Article  CAS  PubMed  Google Scholar 

  23. McReynolds S, Dzieciatkowska M, McCallie BR, Mitchell SD, Stevens J, Hansen K et al (2012) Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril 98(6):1574–1580.e5. https://doi.org/10.1016/j.fertnstert.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  24. Weitzdörfer R, Höger H, Shim KS, Cekici L, Pollak A, Lubec G (2008) Changes of hippocampal signaling protein levels during postnatal brain development in the rat. Hippocampus 18(8):807–813

    Article  PubMed  Google Scholar 

  25. Parrado J, Bougria M, Ayala A, Castaño A, Machado A (1999) Effects of aging on the various steps of protein synthesis: fragmentation of elongation factor 2. Free Radic Biol Med 26(3–4):362–370

    Article  CAS  PubMed  Google Scholar 

  26. Peng YT, Chen P, Ouyang RY, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20(9):1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang S, Liu T, Li S, Zhang X, Ding Q, Que H et al (2008) Comparative proteomic analysis of brains of naturally aging mice. Neuroscience 154(3):1107–1120

    Article  CAS  PubMed  Google Scholar 

  28. Aitbaev KA, Murkamilov IT, Fomin VV (2019) Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications. Adv Gerontol 32(1–2):20–28

    CAS  PubMed  Google Scholar 

  29. Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Sallam R, Bassas A et al (2013) Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 48(11):1196–1203

    Article  CAS  PubMed  Google Scholar 

  30. Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184(1):45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hord JM, Botchlett R, Lawler JM (2016) Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise. Exp Gerontol 83:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wasik U, Schneider G, Mietelska-Porowska A, Mazurkiewicz M, Fabczak H, Weis S et al (2013) Calcyclin binding protein and Siah-1 interacting protein in Alzheimer’s disease pathology: neuronal localization and possible function. Neurobiol Aging 34(5):1380–1388

    Article  CAS  PubMed  Google Scholar 

  33. Poon HF, Shepherd HM, Reed TT, Calabrese V, Stella AM, Pennisi G et al (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27(7):1020–1034

    Article  CAS  PubMed  Google Scholar 

  34. Ching TT, Paal AB, Mehta A, Zhong L, Hsu AL (2010) drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans. Aging Cell 9(4):545–557

    Article  CAS  PubMed  Google Scholar 

  35. Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB et al (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29(1):51–70

    Article  CAS  PubMed  Google Scholar 

  36. Łoniewska B, Adler G, Gumprecht J, Grzeszczak W, Kaczmarczyk M, Bińczak-Kuleta A et al (2012) 1936A→G (I646 V) polymorphism in the AKAP10 gene encoding A-kinase-anchoring protein 10 in very long-lived poles is similar to that in newborns. Exp Aging Res 38(5):584–592

    Article  PubMed  Google Scholar 

  37. Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M (2019) 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int J Mol Sci 20(14). pii: E3518. https://doi.org/10.3390/ijms20143518

  38. Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M et al (2007) Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 42(4):275–286

    Article  CAS  PubMed  Google Scholar 

  39. Lee JH, Khadka P, Baek SH, Chung IK (2010) CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 285(53):42033–42045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mhyre TR, Loy R, Tariot PN, Profenno LA, Maguire-Zeiss KA, Zhang D et al (2008) Proteomic analysis of peripheral leukocytes in Alzheimer’s disease patients treated with divalproex sodium. Neurobiol Aging 29(11):1631–1643

    Article  CAS  PubMed  Google Scholar 

  41. Meshorer E, Soreq H (2002) Pre-mRNA splicing modulations in senescence. Aging Cell 1(1):10–16

    Article  CAS  PubMed  Google Scholar 

  42. Lehmann SG, Bourgoin-Voillard S, Seve M, Rachidi W (2017) Tubulin beta-3 chain as a new candidate protein biomarker of human skin aging: a preliminary study. Oxidative Med Cell Longev 2017:5140360. https://doi.org/10.1155/2017/5140360

    Article  CAS  Google Scholar 

  43. Kobiela T, Milner-Krawczyk M, Pasikowska-Piwko M, Bobecka-Wesołowska K, Eris I, Święszkowski W et al (2018) The effect of anti-aging peptides on mechanical and biological properties of HaCaT keratinocytes. Int J Pept Res Ther 24(4):577–587

    Article  CAS  PubMed  Google Scholar 

  44. Gao X, Teng Y, Luo J, Huang L, Li M, Zhang Z (2014) The survival motor neuron gene smn-1 interacts with the U2AF large subunit gene uaf-1 to regulate Caenorhabditis elegans lifespan and motor functions. RNA Biol 11(9):1148–1160

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klaiman G, Petzke TL, Hammond J, Leblanc AC (2008) Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol Cell Proteomics 7(8):1541–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL (2017) Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 16(6):1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Das A, Bortner JD Jr, Aliaga CA, Baker A, Stanley A, Stanley BA et al (2013) Changes in proteomic profiles in different prostate lobes of male rats throughout growth and development and aging stages of the life span. Prostate 73(4):363–375

    Article  CAS  PubMed  Google Scholar 

  48. Rapoport S, Primiani CT, Chen CT, Ahn K, Ryan VH (2015) Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10(7):e0132675. https://doi.org/10.1371/journal.pone.0132675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM et al (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52. https://doi.org/10.3389/fncel.2016.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maccarrone G, Lebar M, Martins-de-Souza D (2014) Brain quantitative proteomics combining GeLC-MS and isotope-coded protein labeling (ICPL). Methods Mol Biol 1156:175–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2020). MK-801 Treatment of Oligodendrocytes as a Cellular Model of Aging. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics