Skip to main content

Vitamin D and Muscle Sarcopenia in Aging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

Abstract

Sarcopenia, the age-dependent decline of muscle mass and performance, is a common condition among elderly population and is related to numerous adverse health outcomes. Due to the effect of sarcopenia on quality of life, disability, and mortality, a greater awareness is important in order to correctly recognize the condition both in community and geriatric settings. Research on sarcopenia prevention and treatment is growing quickly, but many questions are still unanswered. The core of the sarcopenia state includes quantitative and qualitative declines of skeletal muscle. These two aspects should therefore be considered when designing and examining preventive and therapeutic interventions. The role of vitamin D in skeletal muscle metabolism has been highlighted in recent years. The interest arises from the important findings of studies indicating multiple impacts of vitamin D on this tissue, which can be divided into genomic (direct impacts) and non-genomic impacts (indirect impacts). Another important dimension to be considered in the study of vitamin D and muscle fiber metabolism is associated with different expressions of the vitamin D receptor, which differs in muscle tissue, depending on age, gender, and pathology. Vitamin D inadequacy or deficiency is related to muscle fiber atrophy, elevated risk of chronic musculoskeletal pain, sarcopenia, and falls. This review describes the effect of vitamin D in skeletal muscle tissue function and metabolism and includes discussion of possible mechanisms in skeletal muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S

    Article  CAS  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Landi F (2014) Sarcopenia. Clin Med 14:183–186

    Article  Google Scholar 

  3. Grimby G, Saltin B (1983) The ageing muscle. Clin Physiol 3:209–218

    Article  CAS  PubMed  Google Scholar 

  4. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763

    Article  CAS  PubMed  Google Scholar 

  5. Roubenoff R (2001) Origins and clinical relevance of sarcopenia. Can J Appl Physiol 26(1):78–89

    Article  CAS  PubMed  Google Scholar 

  6. Landi F, Calvani R, Tosato M, Martone AM, Ortolani E, Savera G et al (2016) Protein intake and muscle health in old age: from biological plausibility to clinical evidence. Nutrients 8(5). https://doi.org/10.3390/nu8050295

  7. Abiri B, Vafa MR (2017) Vitamin D and sarcopenia. Adv Obes Weight Manag Control 6(3):00155. https://doi.org/10.15406/aowmc.2017.06.00155

    Article  Google Scholar 

  8. Bikle DD (2011) Vitamin D: an ancient hormone. Exp Dermatol 20:7–13

    Article  CAS  PubMed  Google Scholar 

  9. Girgis CM, Clifton-Bligh RJ, Turner N, Lau SL, Gunton JE (2014) Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol 80(2):169–181

    Article  CAS  Google Scholar 

  10. Chowdhury R, Kunutsor S, Vitezova A, Oliver-Williams C, Chowdhury S, Kiefte-de-Jong JC et al (2014) Vitamin D and risk of cause specific death: systematic review and metaanalysisof observational cohort and randomised intervention studies. BMJ 348:g1903. https://doi.org/10.1136/bmj.g1903

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pfotenhauer KM, Shubrook JH (2017) Vitamin D deficiency, its role in health and disease, and current supplementation recommendations. J Am Osteopath Assoc 117:301–305

    Article  PubMed  Google Scholar 

  12. Herrmann M, Sullivan DR, Veillard AS, McCorquodale T, Straub IR, Scott R et al (2015) Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care 38:521–528

    Article  CAS  PubMed  Google Scholar 

  13. Calton EK, Keane KN, Newsholme P, Soares MJ (2015) The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS One 12(2):e0170665. https://doi.org/10.1371/journal.pone.0170665

    Article  CAS  Google Scholar 

  14. Hassan-Smith ZK, Jenkinson C, Smith DJ, Hernandez I, Morgan SA, Crabtree NJ et al (2017) 25-Hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One 12(2):e0170665. https://doi.org/10.1371/journal.pone.0170665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simpson RU, Thomas GA, Arnold AJ (1985) Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem 260(15):8882–8891

    CAS  PubMed  Google Scholar 

  16. Pfeifer M, Begerow B, Minne HW (2002) Vitamin D and muscle function. Osteoporos Int 13(3):187–194

    Article  CAS  PubMed  Google Scholar 

  17. Campbell PM, Allain TJ (2006) Muscle strength and vitamin in older people. Gerontology 52:335–338

    Article  CAS  PubMed  Google Scholar 

  18. Ceglia L (2008) Vitamin D and skeletal muscle tissue and function. Mol Asp Med 29(6):407–414

    Article  CAS  Google Scholar 

  19. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K (2008) Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res 23:741–749

    Article  CAS  PubMed  Google Scholar 

  20. Salminen M, Saaristo P, Salonoja M, Vaapio S, Vahlberg T, Lamberg-Allardt C et al (2015) Vitamin D status and physical function in older Finnish people: a one-year follow-up study. Arch Gerontol Geriatr 61(3):419–424

    Article  CAS  PubMed  Google Scholar 

  21. Olsson K, Saini A, Stromberg A, Alam S, Lilja M, Rullman E et al (2016) Evidence for vitamin D receptor expression and direct effects of 1α,25(OH)2D3 in human skeletal muscle precursor cells. Endocrinology 157(1):98–111

    Article  CAS  PubMed  Google Scholar 

  22. Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS et al (2016) 1α, 25-Dihydroxyvitamin D3 regulates mitochondrial oxygenconsumption and dynamics in human skeletal muscle cells. J Biol Chem 291(3):1514–1528

    Article  CAS  PubMed  Google Scholar 

  23. Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J et al (2015) A systems based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab 309(12):E1019–E1031

    Article  CAS  PubMed  Google Scholar 

  24. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, CederholmT LF et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064

    Article  PubMed  Google Scholar 

  26. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA et al (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72–77

    Article  PubMed  Google Scholar 

  27. Clark BC, Manini TM (2012) What is dynapenia? Nutrition 28(5):495–503

    Article  PubMed  PubMed Central  Google Scholar 

  28. Srikanthan P, Karlamangla AS (2014) Muscle mass index as a predictor of longevity in older adults. Am J Med 127(6):547–553

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chuang SY, Chang HY, Lee MS, Chia-Yu Chen R, Pan WH (2014) Skeletal muscle mass and risk of death in an elderly population. Nutr Metab Cardiovasc Dis 24(7):784–791

    Article  PubMed  Google Scholar 

  30. Marzetti E, Lees HA, Wohlgemuth SE, Leeuwenburgh C (2009) Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors 35(1):28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cruz-Jentoft AJ, Landi F, Topinková E, Michel JP (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 13(1):1–7

    Article  PubMed  Google Scholar 

  32. Calvani R, Miccheli A, Landi F, Bossola M, Cesari M, Leewenburgh C et al (2013) Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging 2(1):38–53

    PubMed  PubMed Central  Google Scholar 

  33. Martone AM, Lattanzio F, Abbatecola AM, Carpia DL, TosatoM ME et al (2015) Treating sarcopenia in older and oldest old. Curr Pharm Des 21(13):1715–1722

    Article  CAS  PubMed  Google Scholar 

  34. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, SPRINTT Consortium (2015) Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle 6(4):278–286

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ et al (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathwaysto clinical trials. Int J Biochem Cell Biol 45(10):2288–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calvani R, Martone AM, Marzetti E, Onder G, Savera G, Lorenzi M et al (2014) Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip-fractured patients. Front Aging Neurosci 6:269. https://doi.org/10.3389/fnagi.2014.00269

    Article  PubMed  PubMed Central  Google Scholar 

  37. Landi F, Marzetti E, Martone AM, Bernabei R, Onder G (2014) Exercise as a remedy for sarcopenia. Curr Opin Clin Nutr Metab Care 17(1):25–31

    PubMed  Google Scholar 

  38. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A et al (2012) Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc 13(2):121–126

    Article  PubMed  Google Scholar 

  39. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M et al (2013) Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42(2):203–209

    Article  PubMed  Google Scholar 

  40. Cerri AP, Bellelli G, Mazzone A, Pittella F, Landi F, Zambon A et al (2015) Sarcopenia and malnutrition in acutely ill hospitalized elderly: prevalence and outcomes. Clin Nutr 34(4):745–751

    Article  PubMed  Google Scholar 

  41. Vetrano DL, Landi F, Volpato S, Corsonello A, Meloni E, Bernabei R et al (2014) Association of sarcopenia with shortandlong-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol A Biol Sci Med Sci 69(9):1154–1161

    Article  PubMed  Google Scholar 

  42. Du Y, Karvellas CJ, Baracos V, Williams DC, Khadaroo RG, Acute Care and Emergency Surgery (ACES) Group (2014) Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery 156(3):521–527

    Article  PubMed  Google Scholar 

  43. Ferrucci L, Russo CR, Lauretani F, Bandinelli S, Guralnik JM (2002) A role for sarcopenia in late-life osteoporosis. Aging Clin Exp Res 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  44. Di Monaco M, Castiglioni C, De Toma E, Gardin L, Giordano S, Di Monaco R et al (2015) Presarcopenia and sarcopeniain hip-fracture women: prevalence and association with ability to function in activities of daily living. Aging Clin Exp Res 27(4):465–472

    Article  PubMed  Google Scholar 

  45. Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC et al (2013) Prevalence of sarcopenia in community-dwelling older people in the UK using the European working group on sarcopenia in older people (EWGSOP) definition: findings from the Hertfordshire cohort study (HCS). Age Ageing 42(3):378–384

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brown JC, Harhay MO, Harhay MN (2015) Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 7(3):290–298

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim H, Hirano H, Edahiro A, Ohara Y, Watanabe Y, Kojima N et al (2016) Sarcopenia: prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr Gerontol Int 16(Suppl 1):110–122

    Article  PubMed  Google Scholar 

  48. Wu IC, Lin CC, Hsiung CA, Wang CY, Wu CH, Chan DC et al (2014) Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int 14(Suppl 1):52–60

    Article  PubMed  Google Scholar 

  49. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopeniain ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ryall JG, Schertzer JD, Lynch GS (2008) Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 9(4):213–228

    Article  CAS  PubMed  Google Scholar 

  51. Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol (1985) 95(4):1717–1727

    Article  CAS  Google Scholar 

  52. Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  CAS  PubMed  Google Scholar 

  53. TJ D, WF B (1985) Age-related changes in the twitch contractile properties of human thenar motor units. J Appl Physiol 82(1):93–101

    Google Scholar 

  54. Tomlinson BE, Irving D (1977) The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34(2):213–219

    Article  CAS  PubMed  Google Scholar 

  55. Lanteri P, Lombardi G, Colombini A, Banfi G (2013) Vitamin D in exercise: physiologic and analytical concerns. Clin Chim Acta 415:45–53

    Article  CAS  PubMed  Google Scholar 

  56. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34(1):33–83

    Article  CAS  PubMed  Google Scholar 

  57. Neal S, Sykes J, Rigby M, Hess B (2015) A review and clinical summary of vitamin D in regard to bone health and athletic performance. Phys Sportsmed 43(2):161–168

    Article  PubMed  Google Scholar 

  58. Park S, Ham JO, Lee BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33(5):900–905

    Article  CAS  PubMed  Google Scholar 

  59. Seo JA, Cho H, Eun CR, Yoo HJ, Kim SG, Choi KM et al (2012) Association between visceral obesity and sarcopenia and vitamin D deficiency in older Koreans: the Ansan geriatric study. J Am Geriatr Soc 60(4):700–706

    Article  PubMed  Google Scholar 

  60. Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 13(10):893–898

    Article  CAS  PubMed  Google Scholar 

  61. Verhaar HJ, Samson MM, Jansen PA, de Vreede PL, Manten JW, Duursma SA (2000) Muscle strength, functional mobility and vitamin D in older women. Aging (Milano) 12(6):455–460

    CAS  Google Scholar 

  62. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al (2011) The 2011 report on dietary reference intakes forcalcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58

    Article  CAS  PubMed  Google Scholar 

  63. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2009) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20(2):315–322

    Article  CAS  PubMed  Google Scholar 

  64. Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG et al (2004) Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33(6):589–595

    Article  PubMed  Google Scholar 

  65. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20(3):187–192

    Article  CAS  PubMed  Google Scholar 

  66. Halfon M, Phan O, Teta D (2015) Vitamin D: a review on its effects on muscle strength, the risk of fall, and frailty. Biomed Res Int 2015:953241. https://doi.org/10.1155/2015/953241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santillán G, Baldi C, Katz S, Vazquez G, Boland R (2004) Evidence that TRPC3 is a molecular component of the 1α,25(OH) 2D3-activated capacitative calcium entry (CCE) in muscle and osteoblast cells. J Steroid Biochem Mol Biol 89-90(1–5):291–295

    Article  PubMed  CAS  Google Scholar 

  68. Santillán G, Katz S, Vazquez G, Boland RL (2004) TRPC3-like protein and vitamin D receptor mediate 1α,25(OH)2D3-induced SOC influx in muscle cells. Int J Biochem Cell Biol 36(10):1910–1918

    Article  PubMed  CAS  Google Scholar 

  69. Bischoff-Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19(2):265–269

    Article  CAS  PubMed  Google Scholar 

  70. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T et al (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144(12):5138–5144

    Article  CAS  PubMed  Google Scholar 

  71. Capiati D, Benassati S, Boland RL (2002) 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J Cell Biochem 86(1):128–135

    Article  CAS  PubMed  Google Scholar 

  72. Olsson K, Saini A, Strömberg A, Alam S, Lilja M, Rullman E et al (2016) Evidence for vitamin D receptor expression and direct effects of 1α,25(OH)2D3 in human skeletal muscle precursor cells. Endocrinology 157(1):98–111

    Article  CAS  PubMed  Google Scholar 

  73. Sohl E, van Schoor NM, de Jongh RT, Visser M, Deeg DJ, Lips P (2013) Vitamin d status is associated with functional limitations and functional decline in older individuals. J Clin Endocr Metab 98(9):E1483–E1490

    Article  CAS  PubMed  Google Scholar 

  74. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB et al (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33(1):19–24

    Article  CAS  PubMed  Google Scholar 

  75. Girgis CM, Cha KM, Houweling PJ, Rao R, Mokbel N, Lin M et al (2015) Vitamin D receptor ablation and vitamin D deficiencyresult in reduced grip strength, altered muscle fibers, and increased myostatin in mice. Calcif Tissue Int 97(6):602–610

    Article  CAS  PubMed  Google Scholar 

  76. Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A (2013) Vitamin D deficiency induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154(11):4018–4029

    Article  CAS  PubMed  Google Scholar 

  77. Pojednic RM, Ceglia L, Olsson K, Gustafsson T, Lichtenstein AH, Dawson-Hughes B et al (2015) Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells. Calcif Tissue Int 96(3):256–263

    Article  CAS  PubMed  Google Scholar 

  78. Antinozzi C, Corinaldesi C, Giordano C, Pisano A, Cerbelli B, Migliaccio S et al (2017) Potential role for the VDR agonist elocalcitolin metabolic control: evidences in human skeletal muscle cells. J Steroid Biochem Mol Biol 167:169–181

    Article  CAS  PubMed  Google Scholar 

  79. Bhat M, Ismail A (2015) Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. J Steroid Biochem Mol Biol 152:171–179

    Article  CAS  PubMed  Google Scholar 

  80. Sinha A, Hollingsworth KG, Ball S, Cheetham T (2013) Improving the vitamin D status of vitamin D deficient adults is associatedwith improved mitochondrial oxidative function in skeletal muscle. J Clin Endocr Metab 98(3):E509–E513

    Article  CAS  PubMed  Google Scholar 

  81. Al-Eisa ES, Alghadir AH, Gabr SA (2016) Correlation between vitamin D levels and muscle fatigue risk factors based on physical activity in healthy older adults. Clin Interv Aging 11:513–522

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS et al (2016) 1α,25-Dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. J Biol Chem 291(3):1514–1528

    Article  CAS  PubMed  Google Scholar 

  83. Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A (2006) Swimming behaviour and post-swimming activity in vitamin D receptor knockout mice. Brain Res Bull 69(1):74–78

    Article  CAS  PubMed  Google Scholar 

  84. Minasyan A, Keisala T, Zou J, Zhang Y, Toppila E, Syvala H et al (2009) Vestibular dysfunction in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 114(3–5):161–166

    Article  CAS  PubMed  Google Scholar 

  85. Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500(2):157–161

    Article  CAS  PubMed  Google Scholar 

  86. Pointon JJ, Francis MJ, Smith R (1979) Effect of vitamin D deficiency on sarcoplasmic reticulum function and troponinC concentration of rabbit skeletal muscle. Clin Sci (Lond) 57(3):257–263

    Article  CAS  Google Scholar 

  87. Stroder J, Arensmeyer E (1965) Actomyosin content of the skeletal muscles in experimental rickets. Klin Wochenschr 43(22):1201–1202

    Article  CAS  PubMed  Google Scholar 

  88. Pleasure D, Wyszynski B, Sumner A, Schotland D, Feldman B, Nugent N et al (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Investig 64(5):1157–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Curry OB, Basten JF, Francis MJ, Smith R (1974) Calcium uptake by sarcoplasmic reticulum of muscle from vitamin D-deficient rabbits. Nature 249(452):83–84

    Article  CAS  PubMed  Google Scholar 

  90. Tague SE, Clarke GL, Winter MK, McCarson KE, Wright DE, Smith PG (2011) Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci 31(39):13728–13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sakai S, Suzuki M, Tashiro Y, Tanaka K, Takeda S, Aizawa K et al (2015) Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res 30(1):128–136

    Article  CAS  PubMed  Google Scholar 

  92. Vazquez G, Boland R, de Boland AR (1995) Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim Biophys Acta 269(1):91–97

    Article  Google Scholar 

  93. Capiati DA, Vazquez G, Boland RL (2001) Protein kinase C alpha modulates the Ca2+ influx phase of the Ca2+ response to 1alpha,25-dihydroxy-vitamin-D3 in skeletal muscle cells. Horm Metab Res 33(4):201–206

    Article  CAS  PubMed  Google Scholar 

  94. Morelli S, de Boland AR, Boland RL (1993) Generation of inositol phosphates, diacylglyceroland calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. Biochem J 289(Pt 3):675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80(3):1215–1265

    Article  CAS  PubMed  Google Scholar 

  96. Johnson JA, Grande JP, Roche PC, Kumar R (1996) Ontogeny ofthe 1,25-dihydroxyvitamin D3 receptor in fetal rat bone. J Bone Miner Res 11(1):56–61

    Article  CAS  PubMed  Google Scholar 

  97. Artaza JN, Norris KC (2009) Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibroticphenotype in mesenchymalmultipotent cells. J Endocrinol 200(2):207–221

    Article  CAS  PubMed  Google Scholar 

  98. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenicgrowth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152(8):2976–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morelli S, Buitrago C, Boland R, de Boland AR (2001) The stimulation of MAP kinase by 1,25(OH)(2)-vitamin D(3) in skeletal muscle cells is mediated by protein kinase C and calcium. Mol Cell Endocrinol 173(1–2):41–52

    Article  CAS  PubMed  Google Scholar 

  100. Buitrago CG, Pardo VG, de Boland AR, Boland R (2003) Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem 278(4):2199–2205

    Article  CAS  PubMed  Google Scholar 

  101. Ronda AC, Buitrago C, Colicheo A, de Boland AR, Roldan E, Boland R (2007) Activation of MAPKs by 1alpha,25(OH)2- vitamin D3 and 17beta-estradiol in skeletal muscle cells leads to phosphorylation of elk-1 and CREB transcription factors. J Steroid Biochem Mol Biol 103(3–5):462–466

    Article  CAS  PubMed  Google Scholar 

  102. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE (2014) Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 155(2):347–357

    Article  CAS  PubMed  Google Scholar 

  103. Tanaka M, Kishimoto KN, Okuno H, Saito H, Itoi E (2014) Vitamin D receptor gene silencing effects on differentiation of myogenic cell lines. Muscle Nerve 49(5):700–708

    Article  CAS  PubMed  Google Scholar 

  104. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF et al (2008) Vitamin D and human health: lessonsfrom vitamin D receptor null mice. Endocr Rev 29(6):726–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seoane S, Alonso M, Segura C, Perez-Fernandez R (2002) Localization of a negative vitamin D response sequence in the human growth hormone gene. Biochem Biophys Res Commun 292(1):250–255

    Article  CAS  PubMed  Google Scholar 

  106. Sakoda K, Fujiwara M, Arai S, Suzuki A, Nishikawa J, Imagawa M et al (1996) Isolation of a genomic DNA fragment having negative vitamin D response element. Biochem Biophys Res Commun 219(1):31–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Vafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abiri, B., Vafa, M. (2020). Vitamin D and Muscle Sarcopenia in Aging. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics