Skip to main content

Measurement of a Surrogate Biomarker for Arginine Vasopressin Secretion in Association with Physiometric and Molecular Biomarkers of Aging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

Abstract

A number of physiological changes are known to occur with aging, including increased fat mass, increased insulin resistance, and changes in the levels of circulating biomarkers such as lipids, growth factors, and hormones. Here, we present protocols for physiometric assessments, as well as measurements of circulating biomarkers of hormonal and growth factor function in individuals over the age range of 18–52 years. We also test for potential gender differences in the outcome measures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chahal HS, Drake WM (2007) The endocrine system and ageing. J Pathol 211(2):173–180

    Article  CAS  Google Scholar 

  2. Cornier MA, Tate CW, Grunwald GK, Bessesen DH (2002) Relationship between waist circumference, body mass index, and medical care costs. Obes Res 10(11):1167–1172

    Article  Google Scholar 

  3. Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M (2012) Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 15(3):159–165

    Article  CAS  Google Scholar 

  4. An R, Yan H (2017) Body weight status and telomere length in U.S. middle-aged and older adults. Obes Res Clin Pract 11(1):51–62

    Article  Google Scholar 

  5. Hyde Z, Flicker L, Almeida OP, Hankey GJ, McCaul KA, Chubb SA et al (2010) Low free testosterone predicts frailty in older men: the Health in Men Study. J Clin Endocrinol Metab 95(7):3165–3172

    Article  CAS  Google Scholar 

  6. Batsis JA, Sahakyan KR, Singh P, Bartels SJ, Somers VK, Lopez-Jimenez F (2015) Leptin, adiposity, and mortality: results from the National Health and Nutrition Examination Survey III, 1988 to 1994. Mayo Clin Proc 90(4):481–491

    Article  CAS  Google Scholar 

  7. Bhattacharya SK, Chakrabarti A, Glover V (1998) Stress and water balance: the roles of ANP, AVP and isatin. Indian J Exp Biol 36(12):1195–1200

    CAS  PubMed  Google Scholar 

  8. Schrier RW, Fassett RG, Ohara M, Martin PY (1998) Vasopressin release, water channels, and vasopressin antagonism in cardiac failure, cirrhosis, and pregnancy. Proc Assoc Am Physicians 110(5):407–411

    CAS  PubMed  Google Scholar 

  9. Greenwood MP, Greenwood M, Romanova EV, Mecawi AS, Paterson A, Sarenac O et al (2018) The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiol Aging 65:178–191

    Article  CAS  Google Scholar 

  10. Enhörning S, Struck J, Wirfält E, Hedblad B, Morgenthaler NG, Melander O (2011) Plasma copeptin, a unifying factor behind the metabolic syndrome. J Clin Endocrinol Metab 96(7):E1065–E1072

    Article  Google Scholar 

  11. Vintilă M, Gheorghiu ML, Caragheorgheopol A, Baculescu N, Lichiardopol C, Badiu C et al (2016) Increased copeptin levels in metabolic syndrome from a Romanian population. J Med Life 9(4):353–357

    PubMed  PubMed Central  Google Scholar 

  12. Enhörning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M et al (2013) Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes 37(4):598–603

    Article  Google Scholar 

  13. Schinke C, Hesse S, Stoppe M, Meyer K, Schmidt E, Orthgiess J et al (2017) Post-dexamethasone serum copeptin corresponds to HPA axis responsiveness in human obesity. Psychoneuroendocrinology 78:39–47

    Article  CAS  Google Scholar 

  14. Taveau C, Chollet C, Waeckel L, Desposito D, Bichet DG, Arthus MF et al (2015) Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58(5):1081–1090

    Article  CAS  Google Scholar 

  15. Then C, Kowall B, Lechner A, Meisinger C, Heier M, Koenig W et al (2015) Plasma copeptin is associated with type 2 diabetes in men but not in women in the population-based KORA F4 study. Acta Diabetol 52(1):103–112

    Article  CAS  Google Scholar 

  16. Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A et al (2014) Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med 52(10):1447–1456

    Article  CAS  Google Scholar 

  17. Enhörning S, Hedblad B, Nilsson PM, Engström G, Melander O (2015) Copeptin is an independent predictor of diabetic heart disease and death. Am Heart J 169(4):549–556.e1

    Article  Google Scholar 

  18. Body R, Hendry C (2018) Cardiac biomarkers in emergency care. Cardiol Clin 36(1):27–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C., Bernstein, HG., Dobrowolny, H., Borucki, K., Westphal, S., Steiner, J. (2020). Measurement of a Surrogate Biomarker for Arginine Vasopressin Secretion in Association with Physiometric and Molecular Biomarkers of Aging. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics