Skip to main content

Measuring the Hydrodynamic Radius of Colloidal Quantum Dots by Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Book cover Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

  • 904 Accesses

Abstract

Colloidal quantum dots (QDs), due to their versatile optoelectronic properties, have been used in life science applications, especially in fluorescence-based techniques, for over two decades. A great variety of QD syntheses and conjugations are available, and tailoring these for the desired application requires a refined structural characterization. Life science applications rely on the interaction of QDs with biostructures; hence, the knowledge of the QD actual size (i.e., its hydrodynamic radius in the medium the experiment is being carried) and the size of their conjugates is paramount. Fluorescence correlation spectroscopy (FCS) is an optical technique that uses fluorophore light emission to measure its hydrodynamic radius, instead of relying on particle light scattering or crystalline structure, making it ideal for studying bioconjugated QDs in suspension. From the fluorescence intensity autocorrelation, FCS measures the diffusion coefficient of systems in a diluted sample and, by obtaining the diffusion coefficient, it is possible to calculate its hydrodynamic radius. In this chapter we describe the main aspects of the FCS technique and how to use it to calculate the hydrodynamic radius of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos A (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937. https://doi.org/10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. https://doi.org/10.1126/science.281.5385.2013

    Article  CAS  PubMed  Google Scholar 

  3. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018. https://doi.org/10.1126/science.281.5385.2016

    Article  CAS  PubMed  Google Scholar 

  4. Pelaz B et al (2017) Diverse applications of nanomedicine. ACS Nano 11(3):2313–2381. https://doi.org/10.1021/acsnano.6b06040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheung JY, Ge PH, Lim SJ, Lee SH, Smith AM, Selvin PR (2018) Structural contributions to hydrodynamic diameter for quantum dots optimized for live-cell single-molecule tracking. J Phys Chem C 122(30):17406–17412. https://doi.org/10.1021/acs.jpcc.8b02516

    Article  CAS  Google Scholar 

  6. Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705. https://doi.org/10.1103/PhysRevLett.29.705

    Article  CAS  Google Scholar 

  7. Amos WB, White JG (2003) How the confocal laser scanning microscope entered biological research. Biol Cell 95(6):335–342. https://doi.org/10.1016/s0248-4900(03)00078-9

    Article  CAS  PubMed  Google Scholar 

  8. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408. https://doi.org/10.1385/cbb:34:3:383

    Article  CAS  PubMed  Google Scholar 

  9. Rigler R, Mets U (1993) Diffusion of single molecules through a Gaussian laser beam. 239–248. https://doi.org/10.1117/12.146154

  10. Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low-background—analysis of translational diffusion. Eur Biophys J Biophys Lett 22(3):169–175

    Article  CAS  Google Scholar 

  11. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65(2):251–297. https://doi.org/10.1088/0034-4885/65/2/203

    Article  CAS  Google Scholar 

  12. de Thomaz AA, Almeida DB, Pelegati VB, Carvalho HF, Cesar CL (2015) Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking. J Phys Chem B 119(11):4294–4299. https://doi.org/10.1021/jp512214p

    Article  CAS  PubMed  Google Scholar 

  13. Doose S, Tsay JM, Pinaud F, Weiss S (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal Chem 77(7):2235–2242. https://doi.org/10.1021/ac050035n

    Article  CAS  PubMed  Google Scholar 

  14. Heuff RF, Swift JL, Cramb DT (2007) Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. Phys Chem Chem Phys 9(16):1870–1880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André A. de Thomaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Almeida, D.B., de Thomaz, A.A. (2020). Measuring the Hydrodynamic Radius of Colloidal Quantum Dots by Fluorescence Correlation Spectroscopy. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics