Skip to main content

Resazurin-Based Assay to Evaluate Cell Viability After Quantum Dot Interaction

  • Protocol
  • First Online:
Quantum Dots

Abstract

The increasing applications of quantum dots (QDs) as optic tools in life science have stimulated researchers to evaluate the effects of these nanoprobes in cell viability using a variety of methods, especially colorimetric ones. One of the most applied tests is the MTT assay. In comparison to MTT, for example, the resazurin-based method has the main advantage of not evaluating the cells directly, thus eliminating false-positive results that may arise from the overlap of the absorbances of the QD with the colorimetric compound. Therefore, herein, we describe the resazurin assay as an alternative, simple, quick, sensitivity, reproducible, and nontoxic test to evaluate the in vitro cell viability after QD exposure. Moreover, this test presents an additional advantage; the cells remain viable for complementary experimental procedures, such as cell migration or adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reshma VG, Mohanan PV (2019) Quantum dots: applications and safety consequences. J Lumin 205:287–298

    Article  CAS  Google Scholar 

  2. Ranjbar-Navazi Z, Omidi Y, Eskandani M et al (2019) Cadmium-free quantum dot-based theranostics. TrAC Trends Anal Chem 118:386–400

    Article  CAS  Google Scholar 

  3. Brkić S (2018) Applicability of quantum dots in biomedical science. In: Ionizing radiation effects and applications. InTech, London, pp 21–39

    Google Scholar 

  4. Li X, Yan Z, Xiao J et al (2017) Cytotoxicity of CdSe quantum dots and corresponding comparison with FITC in cell imaging efficiency. Int J Clin Exp Med 10:753–759

    CAS  Google Scholar 

  5. Vlasceanu G, Grumezescu AM, Gheorghe I et al (2017) Quantum dots for bioimaging and therapeutic applications. In: Nanostructures for novel therapy: synthesis, characterization and applications. Elsevier, Amsterdam, pp 497–515

    Chapter  Google Scholar 

  6. Matea C, Mocan T, Tabaran F et al (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431

    Article  CAS  Google Scholar 

  7. Cunha CRA, Oliveira ADPR, Firmino TVC et al (2018) Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 1862:427–439

    Article  CAS  Google Scholar 

  8. Pereira MIA, Pereira G, Monteiro CAP et al (2019) Hydrophilic quantum dots functionalized with Gd(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes. Sci Rep 9:2341

    Article  Google Scholar 

  9. Cabral Filho PE, Cabrera MP, Cardoso ALC et al (2018) Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Biochim Biophys Acta Gen Subj 1862:2788–2796

    Article  CAS  Google Scholar 

  10. Quarta A, Piccirillo C, Mandriota G et al (2019) Nanoheterostructures (NHS) and their applications in nanomedicine: focusing on in vivo studies. Materials (Basel) 12:37

    Article  Google Scholar 

  11. Levy M, Chowdhury PP, Nagpal P (2019) Quantum dot therapeutics: a new class of radical therapies. J Biol Eng 13:48

    Article  Google Scholar 

  12. Mirnajafizadeh F, Ramsey D, McAlpine S et al (2018) Nanoparticles for bioapplications: study of the cytotoxicity of water dispersible quantum dots. Nano 9:465

    Google Scholar 

  13. Wagner AM, Knipe JM, Orive G et al (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63

    Article  CAS  Google Scholar 

  14. Tarantini A, Wegner KD, Dussert F et al (2019) Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: a safer by design evaluation. NanoImpact 14:100168

    Article  Google Scholar 

  15. Qu M, Qiu Y, Lv R et al (2019) Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 173:54–62

    Article  CAS  Google Scholar 

  16. Aslantürk ÖS (2018) In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. In: Genotoxicity—a predictable risk to our actual world. InTech, London, pp 1–17

    Google Scholar 

  17. Manshian BB, Soenen SJ, Brown A et al (2016) Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis 31:97–106

    CAS  PubMed  Google Scholar 

  18. Skorupska S, Grabowska-Jadach I (2019) Cytotoxicity studies of quantum dots with the electroporation method. Bioelectrochemistry 126:86–91

    Article  CAS  Google Scholar 

  19. Jain AK, Singh D, Dubey K et al (2017) Models and methods for in vitro toxicity. In: In vitro toxicology. Elsevier, Amsterdam, pp 45–65

    Google Scholar 

  20. Borra RC, Lotufo MA, Gagioti SM et al (2009) A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz Oral Res 23:255–262

    Article  Google Scholar 

  21. Carvalho EVMM, Oliveira WF, Coelho LCBB et al (2018) Lectins as mitosis stimulating factors: briefly reviewed. Life Sci 207:152–157

    Article  CAS  Google Scholar 

  22. Schmitt DM, O’Dee DM, Cowan BN et al (2013) The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front Cell Infect Microbiol 3:1–6

    Article  Google Scholar 

  23. Tenório DPLA, Andrade CG, Cabral Filho PE et al (2015) CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. J Photochem Photobiol B Biol 142:237–243

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian agencies: Coordenação de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo a Ciência e a Tecnologia do Estado de Pernambuco (FACEPE). This work is also linked to the National Institute of Photonics (INCT-INFo), and LARnano/UFPE.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pereira, M.I.A., Monteiro, C.A.P., de Oliveira, W.F., Santos, B.S., Fontes, A., Cabral Filho, P.E. (2020). Resazurin-Based Assay to Evaluate Cell Viability After Quantum Dot Interaction. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics