Skip to main content
Book cover

Quantum Dots pp 199–212Cite as

Stimulus-Sensitive Theranostic Delivery Systems Based on Microcapsules Encoded with Quantum Dots and Magnetic Nanoparticles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

Abstract

Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), and magnetic nanoparticles (MNPs) are extensively studied perspective tools for optical (fluorescence) and magnetic resonance imaging techniques. The unique optical properties, high photostability, and bright luminescence of QDs make them more promising fluorophores than the classical organic dyes. Encoding polyelectrolyte microcapsules with QDs and MNPs ensures their sensitivity to both photoexcitation and magnetic field. This chapter presents the protocol for obtaining a stimulus-sensitive delivery system based on QD- and MNP-encoded polyelectrolyte microcapsules by means of layer-by-layer self-assembly. The resultant fluorescent magnetic polyelectrolyte microcapsules are 3.4–5.5 μm in size, have a hollow structure, and are brightly fluorescent to be detected with the standard imaging equipment. Polyelectrolyte microcapsule surface bears functional groups for subsequent functionalization with vector capture molecules. The polyelectrolyte microcapsules containing combination of QDs and MNPs are advanced visualization tools, since they can be sorted in a magnetic field and at the same time are suitable for fluorescent imaging what can be applied within a wide range of diagnostic and therapeutic protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Volodkin DV, Petrov AI, Prevot M et al (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20:3398–3406. https://doi.org/10.1021/la036177z

    Article  CAS  PubMed  Google Scholar 

  2. Díez-Pascual AM, Shuttleworth PS (2014) Layer-by-layer assembly of biopolyelectrolytes onto thermo/pH-responsive micro/nano-gels. Materials (Basel) 7:7472–7512. https://doi.org/10.3390/ma7117472

    Article  Google Scholar 

  3. Qiu X, Leporatti S, Donath E et al (2001) Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17:5375–5380. https://doi.org/10.1021/la010201w

    Article  CAS  Google Scholar 

  4. Kim BS, Choi JW (2007) Polyelectrolyte multilayer microcapsules: Self-assembly and toward biomedical applications. Biotechnol Bioprocess Eng 12:323–332. https://doi.org/10.1007/BF02931052

    Article  CAS  Google Scholar 

  5. Dong WF, Ferri JK, Adalsteinsson T et al (2005) Influence of shell structure on stability, integrity, and mesh size of polyelectrolyte capsules: mechanism and strategy for improved preparation. Chem Mater 17:2603–2611. https://doi.org/10.1021/cm050103m

    Article  CAS  Google Scholar 

  6. D́jugnat C, Sukhorukov GB (2004) pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir 20:7265–7269. https://doi.org/10.1021/la049706n

    Article  CAS  Google Scholar 

  7. Nifontova G, Zvaigzne M, Baryshnikova M et al (2018) Next-generation theranostic agents based on polyelectrolyte microcapsules encoded with semiconductor nanocrystals: development and functional characterization. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2447-z

  8. Gaponik N, Radtchenko IL, Gerstenberger MR et al (2003) Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals. Nano Lett 3:369–372. https://doi.org/10.1021/nl0259333

    Article  CAS  Google Scholar 

  9. Bilan R, Ametzazurra A, Brazhnik K et al (2017) Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP system. Sci Rep. https://doi.org/10.1038/srep44668

  10. Bilan R, Sukhanova A, Nabiev I (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 22:2103–2114. https://doi.org/10.1002/cbic.201600357

    Article  CAS  Google Scholar 

  11. Nifontova G, Efimov A, Agapova O et al (2019) Bioimaging tools based on polyelectrolyte microcapsules encoded with fluorescent semiconductor nanoparticles: design and characterization of the fluorescent properties. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-2859-4

  12. Gaponik N, Radtchenko IL, Sukhorukov GB et al (2004) Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 20:1449–1452. https://doi.org/10.1021/la035914o

    Article  CAS  PubMed  Google Scholar 

  13. Carregal-Romero S, Ochs M et al (2012) Nanoparticle-functionalized microcapsules for in vitro delivery and sensing. Nano 1:171–180. https://doi.org/10.1515/nanoph-2012-0014

    Article  CAS  Google Scholar 

  14. Lyubutin IS, Starchikov SS, Bukreeva TV et al (2014) In situ synthesis and characterization of magnetic nanoparticles in shells of biodegradable polyelectrolyte microcapsules. Mater Sci Eng C 45:225–233. https://doi.org/10.1016/j.msec.2014.09.017

    Article  CAS  Google Scholar 

  15. Navolokin N, German S, Bucharskaya A et al (2018) Systemic administration of polyelectrolyte microcapsules: where do they accumulate and when? In vivo and ex vivo study. Nano 8:812. https://doi.org/10.3390/nano8100812

    Article  CAS  Google Scholar 

  16. Markides H, Rotherham M, El Haj AJ (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13–15. https://doi.org/10.1155/2012/614094

    Article  CAS  Google Scholar 

  17. Chen D, Tang Q, Li X et al (2012) Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells. Int J Nanomedicine 7:4973–4982. https://doi.org/10.2147/IJN.S35140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trushina DB, Bukreeva TV, Kovalchuk MV et al (2014) CaCO3 vaterite microparticles for biomedical and personal care applications. Mater Sci Eng C 45:644–658. https://doi.org/10.1016/j.msec.2014.04.050

    Article  CAS  Google Scholar 

  19. Minaeva OV, Brodovskaya EP, Pyataev MA et al (2017) Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetitecontaining polyelectrolyte microcapsules. IOP Conf Ser J Phys Conf Ser 784:1–11. https://doi.org/10.1088/1742-6596/755/1/011001

    Article  CAS  Google Scholar 

  20. Brazhnik K, Nabiev I, Sukhanova A (2014) Oriented conjugation of single-domain antibodies and quantum dots. In: Fontes A, Saegesser Santos B (eds) Quantum dots: applications in biology, methods in molecular biology. Springer Science, New York, NY

    Google Scholar 

  21. Brazhnik K, Sokolova Z, Baryshnikova M, Bilan R, Efimov A, Nabiev I, Sukhanova A (2015) Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samples. Nanomedicine: NBM 11:1065–1075. https://doi.org/10.1016/j.nano.2015.03.003

    Article  CAS  Google Scholar 

  22. De Sousa ME, Fernández Van Raap MB, Rivas PC et al (2013) Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C 117:5436–5445. https://doi.org/10.1021/jp311556b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation, State Contract no. 16.1034.2017/ΠЧ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Nabiev or Alyona Sukhanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nifontova, G., Ramos-Gomes, F., Alves, F., Nabiev, I., Sukhanova, A. (2020). Stimulus-Sensitive Theranostic Delivery Systems Based on Microcapsules Encoded with Quantum Dots and Magnetic Nanoparticles. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics