Skip to main content

Quantitative Chemical Delivery of Quantum Dots into the Cytosol of Cells

  • Protocol
  • First Online:
Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

Abstract

The ability to image single molecules in living cells has been impaired by the absence of bright, photostable fluorophores. Quantum dots (QDs) offer an attractive solution to this problem due to their exceptional photostability and brightness. Here, we describe in detail a protocol to chemically deliver functionalized QDs into the cytosol of living cells, based on cell-penetrating poly(disulfide)s (CPDs). This protocol is highly efficient and delivers hundreds of QDs per cell after incubation of cells with functionalized QDs at nanomolar concentrations. We also detail a pipeline for automated detection and tracking of diffusive QDs in living cells, which may provide a useful means to study the biophysical properties of the cytosol and their dynamics. Last, we describe a protocol for conjugating streptavidin fusion proteins to QDs, in order to permit the codelivery of QDs with functional proteins of interest into cells. The protocol has been successfully applied to a broad range of different cell types, thus offering a flexible and generalizable means to image single molecules in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hildebrandt N, Spillmann CM, Algar WR et al (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117:536–711. https://doi.org/10.1021/acs.chemrev.6b00030

    Article  CAS  PubMed  Google Scholar 

  2. Bouzigues C, Morel M, Triller A, Dahan M (2007) Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc Natl Acad Sci U S A 104:11251–11256. https://doi.org/10.1073/pnas.0702536104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chung I, Akita R, Vandlen R et al (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–787. https://doi.org/10.1038/nature08827

    Article  CAS  PubMed  Google Scholar 

  4. Matea CT, Mocan T, Tabaran F et al (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431. https://doi.org/10.2147/IJN.S138624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katrukha EA, Mikhaylova M, van Brakel HX et al (2017) Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat Commun 8:14772. https://doi.org/10.1038/ncomms14772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Courty S, Luccardini C, Bellaiche Y et al (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6:1491–1495. https://doi.org/10.1021/nl060921t

    Article  CAS  PubMed  Google Scholar 

  7. Zahid MU, Ma L, Lim SJ, Smith AM (2018) Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state. Nat Commun 9:1830. https://doi.org/10.1038/s41467-018-04185-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Damalakiene L, Karabanovas V, Valius S et al (2013) Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection. Int J Nanomedicine 8:555. https://doi.org/10.2147/IJN.S39658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M (2017) Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 28:173–181. https://doi.org/10.1091/mbc.E16-06-0413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  Google Scholar 

  11. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  Google Scholar 

  12. Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep 4:528–534. https://doi.org/10.3892/br.2016.639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tünnemann G, Ter-Avetisyan G, Martin RM et al (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14:469–476. https://doi.org/10.1002/psc.968

    Article  CAS  PubMed  Google Scholar 

  14. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications☆. Adv Drug Deliv Rev 61:953–964. https://doi.org/10.1016/j.addr.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Choi YS, David AE (2014) Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol 15:192–199

    Article  CAS  Google Scholar 

  16. Madani F, Lindberg S, Langel Ü et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:1–10. https://doi.org/10.1155/2011/414729

    Article  CAS  Google Scholar 

  17. Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:131–151. https://doi.org/10.1002/wnan.1281

    Article  CAS  PubMed  Google Scholar 

  18. Delehanty JB, Bradburne CE, Susumu K et al (2011) Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J Am Chem Soc 133:10482–10489. https://doi.org/10.1021/ja200555z

    Article  CAS  PubMed  Google Scholar 

  19. McKinlay CJ, Waymouth RM, Wender PA (2016) Cell-penetrating, guanidinium-rich oligophosphoesters: effective and versatile molecular transporters for drug and probe delivery. J Am Chem Soc 138:3510–3517. https://doi.org/10.1021/jacs.5b13452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li M, Schlesiger S, Knauer SK, Schmuck C (2015) A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew Chem Int Ed 54:2941–2944. https://doi.org/10.1002/anie.201410429

    Article  CAS  Google Scholar 

  21. Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702. https://doi.org/10.1016/J.FEBSLET.2013.04.031

    Article  CAS  PubMed  Google Scholar 

  22. Herce HD, Garcia AE, Cardoso MC (2014) Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 136:17459–17467. https://doi.org/10.1021/ja507790z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodríguez J, Mosquera J, Couceiro JR et al (2017) Anion recognition as a supramolecular switch of cell internalization. J Am Chem Soc 139:55–58. https://doi.org/10.1021/jacs.6b11103

    Article  CAS  PubMed  Google Scholar 

  24. Nakase I, Akita H, Kogure K et al (2012) Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45:1132–1139. https://doi.org/10.1021/ar200256e

    Article  CAS  PubMed  Google Scholar 

  25. Jablonski AE, Kawakami T, Ting AY, Payne CK (2010) Pyrenebutyrate leads to cellular binding, not intracellular delivery, of polyarginine quantum dots. J Phys Chem Lett 1:1312–1315. https://doi.org/10.1021/jz100248c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759–14766. https://doi.org/10.1021/ja074936k

    Article  CAS  PubMed  Google Scholar 

  27. Gasparini L, Anthony Crowther R, Martin KR et al (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2009.03.002

  28. Gasparini G, Bang E-K, Montenegro J, Matile S (2015) Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun 51:10389–10402. https://doi.org/10.1039/C5CC03472H

    Article  CAS  Google Scholar 

  29. Gasparini G, Bang E-K, Molinard G et al (2014) Cellular uptake of substrate-initiated cell-penetrating poly(disulfide)s. J Am Chem Soc 136:6069–6074. https://doi.org/10.1021/ja501581b

    Article  CAS  PubMed  Google Scholar 

  30. Chuard N, Gasparini G, Moreau D et al (2017) Strain-promoted thiol-mediated cellular uptake of giant substrates: liposomes and polymersomes. Angew Chem Int Ed 56:2947–2950. https://doi.org/10.1002/anie.201611772

    Article  CAS  Google Scholar 

  31. Aubry S, Burlina F, Dupont E et al (2009) Cell-surface thiols affect cell entry of disulfide-conjugated peptides. FASEB J 23:2956–2967. https://doi.org/10.1096/fj.08-127563

    Article  CAS  PubMed  Google Scholar 

  32. Oupický D, Li J (2014) Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol Biosci 14:908–922. https://doi.org/10.1002/mabi.201400061

    Article  CAS  PubMed  Google Scholar 

  33. Derivery E, Bartolami E, Matile S, Gonzalez-Gaitan M (2017) Efficient delivery of quantum dots into the cytosol of cells using cell-penetrating poly(disulfide)s. J Am Chem Soc. https://doi.org/10.1021/jacs.7b02952

  34. Zahid M, Robbins P (2015) Cell-type specific penetrating peptides: therapeutic promises and challenges. Molecules 20:13055–13070. https://doi.org/10.3390/molecules200713055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Derivery E, Seum C, Daeden A et al (2015) Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528:280–285. https://doi.org/10.1038/nature16443

    Article  CAS  PubMed  Google Scholar 

  36. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  37. Bobroff N (1986) Position measurement with a resolution and noise-limited instrument. Rev Sci Instrum 57:1152–1157. https://doi.org/10.1063/1.1138619

    Article  Google Scholar 

  38. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783. https://doi.org/10.1016/S0006-3495(02)75618-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Efros AL, Nesbitt DJ (2016) Origin and control of blinking in quantum dots. Nat Nanotechnol 11:661–671. https://doi.org/10.1038/nnano.2016.140

    Article  CAS  PubMed  Google Scholar 

  41. Tarantino N, Tinevez J-Y, Crowell EF et al (2014) TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol 204:231–245. https://doi.org/10.1083/jcb.201307172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Metzler K (2000) Subdiffusive transport close to thermal equilibrium: from the langevin equation to fractional diffusion. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61:6308–6311

    CAS  PubMed  Google Scholar 

  43. Kepten E, Weron A, Sikora G et al (2015) Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS One 10:e0117722. https://doi.org/10.1371/journal.pone.0117722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Council (file reference number MC_UP_1201/13), HFSP (CDA00034/2017-C) for E.D., a Michael Neuberger Studentship for J.L.W, and the Astra/Zeneca Blue Skies Initiative for A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Derivery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watson, J.L., Stangherlin, A., Derivery, E. (2020). Quantitative Chemical Delivery of Quantum Dots into the Cytosol of Cells. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics