Skip to main content

Preparation of Recombinant Siglecs and Identification of Their Ligands

  • Protocol
  • First Online:
Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

Abstract

Siglecs are transmembrane receptor-like vertebrate lectins that recognize glycans containing sialic acid. Most Siglecs also interact with intracellular signal transduction molecules, and modulate immune responses. Recombinant soluble Siglecs fused with the fragment crystallizable (Fc) region of immunoglobulin G (Siglec-Fc) are a versatile tool for the investigation of Siglec functions. We describe protocols for the production of recombinant Siglec-Fc, the analysis of expression of Siglec ligands by flow cytometry, and the identification of the Siglec ligand candidates based on proximity labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crocker P, Paulson J, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266

    Article  CAS  Google Scholar 

  2. Macauley M, Crocker P, Paulson J (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666. https://doi.org/10.1038/nri3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pillai S, Netravali I, Cariappa A, Mattoo H (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392. https://doi.org/10.1146/annurev-immunol-020711-075018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16(1):1R–27R

    Article  CAS  Google Scholar 

  5. Varki A, Schnaar RL, Crocker PR (2015) I-type Lectins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 453–467. https://doi.org/10.1101/glycobiology.3e.035

    Chapter  Google Scholar 

  6. Kitazume S, Imamaki R, Kurimoto A, Ogawa K, Kato M, Yamaguchi Y, Tanaka K, Ishida H, Ando H, Kiso M, Hashii N, Kawasaki N, Taniguchi N (2014) Interaction of platelet endothelial cell adhesion molecule (PECAM) with alpha2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J Biol Chem 289(40):27604–27613. https://doi.org/10.1074/jbc.M114.563585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitazume S, Imamaki R, Ogawa K, Komi Y, Futakawa S, Kojima S, Hashimoto Y, Marth JD, Paulson JC, Taniguchi N (2010) Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J Biol Chem 285(9):6515–6521. https://doi.org/10.1074/jbc.M109.073106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Angata T (2018) Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. Front Immunol 9:2885. https://doi.org/10.3389/fimmu.2018.02885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carroll DJ, O'Sullivan JA, Nix DB, Cao Y, Tiemeyer M, Bochner BS (2018) Sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8) is an activating receptor mediating beta2-integrin-dependent function in human eosinophils. J Allergy Clin Immunol 141(6):2196–2207. https://doi.org/10.1016/j.jaci.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  10. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, Hillier M, Maher J, Noll T, Crocker PR, Taylor-Papadimitriou J, Burchell JM (2016) The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol 17(11):1273–1281. https://doi.org/10.1038/ni.3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blasius A, Cella M, Maldonado J, Takai T, Colonna M (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107(6):2474–2476

    Article  CAS  Google Scholar 

  12. Angata T (2014) Associations of genetic polymorphisms of Siglecs with human diseases. Glycobiology 24(9):785–793. https://doi.org/10.1093/glycob/cwu043

    Article  CAS  PubMed  Google Scholar 

  13. Oetke C, Vinson M, Jones C, Crocker P (2006) Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 26(4):1549–1557

    Article  CAS  Google Scholar 

  14. Meyer SJ, Linder AT, Brandl C, Nitschke L (2018) B cell Siglecs-news on signaling and its interplay with ligand binding. Front Immunol 9:2820. https://doi.org/10.3389/fimmu.2018.02820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffmann A, Kerr S, Jellusova J, Zhang J, Weisel F, Wellmann U, Winkler T, Kneitz B, Crocker P, Nitschke L (2007) Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 8(7):695–704

    Article  CAS  Google Scholar 

  16. McMillan S, Sharma R, McKenzie E, Richards H, Zhang J, Prescott A, Crocker P (2013) Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling. Blood 121(11):2084–2094. https://doi.org/10.1182/blood-2012-08-449983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang M, Angata T, Cho J, Miller M, Broide D, Varki A (2007) Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109(10):4280–4287

    Article  CAS  Google Scholar 

  18. Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res 28(12):2463–2475. https://doi.org/10.1002/jbmr.1989

    Article  CAS  PubMed  Google Scholar 

  19. Chang YC, Nizet V (2014) The interplay between siglecs and sialylated pathogens. Glycobiology 24(9):818–825. https://doi.org/10.1093/glycob/cwu067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Angata T, Varki A (2015) Siglec interactions with pathogens. In: Taniguchi N, Endo T, Hart GW, Seeberger PH, Wong C-H (eds) Glycoscience: biology and medicine, vol 1, 1st edn. Springer, New York, pp 633–642

    Chapter  Google Scholar 

  21. Bull C, Heise T, Adema GJ, Boltje TJ (2016) Sialic acid mimetics to target the sialic acid-siglec axis. Trends Biochem Sci 41(6):519–531. https://doi.org/10.1016/j.tibs.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  22. Adams OJ, Stanczak MA, von Gunten S, Laubli H (2018) Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology 28(9):640–647. https://doi.org/10.1093/glycob/cwx108

    Article  CAS  PubMed  Google Scholar 

  23. Angata T, Nycholat CM, Macauley MS (2015) Therapeutic targeting of siglecs using antibody- and glycan-based approaches. Trends Pharmacol Sci 36(10):645–660. https://doi.org/10.1016/j.tips.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I (1993) CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem 268(10):7011–7018

    CAS  PubMed  Google Scholar 

  25. Powell L, Sgroi D, Sjoberg E, Stamenkovic I, Varki A (1993) Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem 268(10):7019–7027

    CAS  PubMed  Google Scholar 

  26. Freeman S, Kelm S, Barber E, Crocker P (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85(8):2005–2012

    Article  CAS  Google Scholar 

  27. Gieseke F, Mang P, Viebahn S, Sonntag I, Kruchen A, Erbacher A, Pfeiffer M, Handgretinger R, Muller I (2012) Siglec-7 tetramers characterize B-cell subpopulations and leukemic blasts. Eur J Immunol 42(8):2176–2186. https://doi.org/10.1002/eji.201142298

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Gil A, Porell RN, Fernandes SM, Wei Y, Yu H, Carroll DJ, McBride R, Paulson JC, Tiemeyer M, Aoki K, Bochner BS, Schnaar RL (2018) Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28(10):786–801. https://doi.org/10.1093/glycob/cwy057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramya T, Weerapana E, Liao L, Zeng Y, Tateno H, Liao L, Jr Y, Cravatt B, Paulson J (2010) In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol Cell Proteomics 9(6):1339–1351. https://doi.org/10.1074/mcp.M900461-MCP200

  30. Chang L, Chen YJ, Fan CY, Tang CJ, Chen YH, Low PY, Ventura A, Lin CC, Chen YJ, Angata T (2017) Identification of siglec ligands using a proximity labeling method. J Proteome Res 16(10):3929–3941. https://doi.org/10.1021/acs.jproteome.7b00625

    Article  CAS  PubMed  Google Scholar 

  31. Rees JS, Li XW, Perrett S, Lilley KS, Jackson AP (2015) Protein neighbors and proximity proteomics. Mol Cell Proteomics 14(11):2848–2856. https://doi.org/10.1074/mcp.R115.052902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu G, Nagala M, Crocker PR (2017) Identification of lectin counter-receptors on cell membranes by proximity labeling. Glycobiology 27(9):800–805. https://doi.org/10.1093/glycob/cwx063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alborzian Deh Sheikh A, Akatsu C, Imamura A, Abdu-Allah HHM, Takematsu H, Ando H, Ishida H, Tsubata T (2018) Proximity labeling of cis-ligands of CD22/Siglec-2 reveals stepwise alpha2,6 sialic acid-dependent and -independent interactions. Biochem Biophys Res Commun 495(1):854–859. https://doi.org/10.1016/j.bbrc.2017.11.086

    Article  CAS  PubMed  Google Scholar 

  34. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929. https://doi.org/10.1110/ps.8.4.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang PCJ, Low PY, Wang I, Hsu STD, Angata T (2018) Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J Biol Chem 293(51):19645–19658. https://doi.org/10.1074/jbc.RA118.005676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li XW, Rees JS, Xue P, Zhang H, Hamaia SW, Sanderson B, Funk PE, Farndale RW, Lilley KS, Perrett S, Jackson AP (2014) New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 289(21):14434–14447. https://doi.org/10.1074/jbc.M113.529578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Connolly N, Jones M, Watt S (2002) Human Siglec-5: tissue distribution, novel isoforms and domain specificities for sialic acid-dependent ligand interactions. Br J Haematol 119(1):221–238

    Article  CAS  Google Scholar 

  38. Hayakawa T, Khedri Z, Schwarz F, Landig C, Liang SY, Yu H, Chen X, Fujito NT, Satta Y, Varki A, Angata T (2017) Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evol Biol 17(1):228. https://doi.org/10.1186/s12862-017-1075-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Ministry of Science and Technology, Taiwan (105-2627-M-007-001 and 104-2311-B-001-017-MY3), Summit Project by Academia Sinica and Ministry of Science and Technology (107-0210-01-19-01), and Summit Project by Academia Sinica (AS-SUMMIT-108), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Angata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, LY., Low, P.Y., Sridharan, D., Gerlovin, K., Angata, T. (2020). Preparation of Recombinant Siglecs and Identification of Their Ligands. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics