Skip to main content

Purification of GNA-Related Lectins from Natural Sources

  • Protocol
  • First Online:
Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

  • 1506 Accesses

Abstract

The Galanthus nivalis lectin, abbreviated as GNA, is the model protein for a large group of mannose-binding lectins. Here, we describe the purification of GNA starting from dry bulbs. Using a combination of ion exchange chromatography and affinity chromatography on mannose-Sepharose, a highly pure preparation of GNA can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GNA:

Galanthus nivalis agglutinin

References

  1. Van Damme EJM, Allen AK, Peumans WJ (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett 215:140–144

    Article  Google Scholar 

  2. Hester G, Kaku H, Goldstein IJ et al (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Mol Biol 2:472–479

    Article  CAS  Google Scholar 

  3. Van Damme EJM, Smeets K, Peumans WJ (1995) The mannose-binding monocot lectins and their genes. In: Pusztai A, Bardocz S (eds) Lectins: biomedical perspectives. Taylor and Francis, London, pp 59–80

    Google Scholar 

  4. Van Damme EJM, Peumans WJ, Barre A et al (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Article  Google Scholar 

  5. Van Damme EJM, Peumans WJ, Pusztai A et al (1998) Handbook of plant lectins: properties and biomedical applications. John Wiley & Sons, Chichester, p 452

    Google Scholar 

  6. Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. Adv Bot Res 48:107–209

    Article  Google Scholar 

  7. Chandra NR, Kular N, Jeyakani J et al (2006) Lectindb: a plant lectin database. Glycobiology 16:938–946

    Article  CAS  Google Scholar 

  8. Barre A, Bourne Y, Van Damme EJM et al (2019) Overview of the structure-function relationships of mannose-specific lectins from plants, algae and fungi. Int J Mol Sci 20:254

    Article  Google Scholar 

  9. Smeets K, Van Damme EJM, Verhaert P et al (1997) Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Mol Biol 33:223–234

    Article  CAS  Google Scholar 

  10. Van Holle S, De Schutter K, Eggermont L et al (2017) Comparative study of lectin domains in model species: new insights into evolutionary dynamics. Int J Mol Sci 18:1136

    Article  Google Scholar 

  11. Van Holle S, Van Damme EJM (2019) Messages from the past: new insights in plant lectin evolution. Front Plant Sci 10:36

    Article  Google Scholar 

  12. Parret AH, Schoofs G, Proost P et al (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908

    Article  CAS  Google Scholar 

  13. Fouquaert E, Peumans WJ, Gheysen G et al (2011) Identical homologs of the Galanthus nivalis agglutinin in Zea mays and Fusarium verticillioides. Plant Physiol Biochem 49:46–54

    Article  CAS  Google Scholar 

  14. Tsutsui S, Tasumi S, Suetake H et al (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278:20882–20889

    Article  CAS  Google Scholar 

  15. Van Damme EJM, Barre A, Rougé P et al (2004) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489

    Article  Google Scholar 

  16. Shibuya N, Goldstein IJ, Van Damme EJM et al (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263:728–734

    CAS  PubMed  Google Scholar 

  17. Van Damme EJM, Smith DF, Cummings R et al (2008) Glycan arrays to decipher the specificity of plant lectins. In: Wu AM (ed) The molecular immunology of complex carbohydrates. Kluwer Academic/Plenum Publishers, New York, pp 841–854

    Google Scholar 

  18. Van Damme EJM, Briké F, Winter HC et al (1996) Molecular cloning of two different mannose-binding lectins from tulip bulbs. Eur J Biochem 236:419–427

    Article  Google Scholar 

  19. Van Damme EJM, Nakamura-Tsurata S, Smith DF et al (2007) Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem J 404:51–61

    Article  Google Scholar 

  20. Barre A, Van Damme EJM, Peumans WJ et al (1996) Structure-function relationship of monocot mannose-binding lectins. Plant Physiol 112:1531–1540

    Article  CAS  Google Scholar 

  21. Barre A, Van Damme EJM, Peumans WJ et al (1997) Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Mol Biol 33:691–698

    Article  CAS  Google Scholar 

  22. Van Damme EJM (2011) Lectins as tools to select for glycosylated proteins. In: Gevaert K, Vandekerckhove J (eds) Methods in molecular biology – gel-free proteomics, vol 753. Springer, LLC, New York, pp 289–297

    Chapter  Google Scholar 

  23. Gómez-Santos L, Alonso E, Díaz-Flores L et al (2017) Transdifferentiation of mucous neck cells into chief cells in fundic gastric glands shown by GNA lectin histochemistry. Tissue Cell 49:746–750

    Article  Google Scholar 

  24. Hilder VA, Powell KS, Gatehouse AMR et al (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transg Res 4:18–25

    Article  CAS  Google Scholar 

  25. Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  CAS  Google Scholar 

  26. Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550

    Article  CAS  Google Scholar 

  27. Kim NH, Lee DH, Choi DS et al (2015) The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. Plant Sci 241:307–315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported mainly by grants from Ghent University and the Fund for Scientific Research-Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els J. M. Van Damme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Damme, E.J.M. (2020). Purification of GNA-Related Lectins from Natural Sources. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_40

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics