Skip to main content

Calnexin/Calreticulin and Assays Related to N-Glycoprotein Folding In Vitro

  • Protocol
  • First Online:
Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

Abstract

Calnexin (CNX) and calreticulin (CRT) are ER-resident lectin-like molecular chaperones involved in the quality control of secretory or membrane glycoproteins. They can exert molecular chaperone functions via specific binding to the early processing intermediates of Glc1Man9GlcNAc2 oligosaccharides of N-glycoproteins. CNX and CRT have similar N-terminal luminal domains and share the same jelly roll tertiary structure as legume lectins. In addition to the lectin-like interactions, CNX and CRT also suppress the aggregation of non-glycosylated substrates through interaction with hydrophobic peptide parts, suggesting a general chaperone function in glycan-dependent and glycan-independent manners. This chapter describes the isolation and purification of CRT produced in a bacterial expression system. We also introduce in vitro assays to estimate the molecular chaperone functions of CRT via the interaction with monoglucosylated N-glycans using Jack bean α-mannosidase as a target substrate. These assays are valuable in assessing quality control events related to the CNX/CRT chaperone cycle and lectin functions.

This work was supported by a Ministry of Education, Culture, Sports, Science and Technology of Japan Grant-in-Aid for Scientific Research (JP16H06290).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664. https://doi.org/10.1146/annurev.bi.54.070185.003215

    Article  CAS  PubMed  Google Scholar 

  2. Lamriben L, Graham JB, Adams BM, Hebert DN (2016) N-glycan-based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic 17:308–326. https://doi.org/10.1111/tra.12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth J, Zuber C (2017) Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 147:269–284. https://doi.org/10.1007/s00418-016-1513-9

    Article  CAS  PubMed  Google Scholar 

  4. Tannous A, Pisoni GB, Hebert DN, Molinari M (2015) N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 41:79–89. https://doi.org/10.1016/j.semcdb.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589:3379–3387. https://doi.org/10.1016/j.febslet.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  6. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666. https://doi.org/10.1042/BJ20081847

    Article  CAS  PubMed  Google Scholar 

  7. Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91:913–917

    Article  CAS  Google Scholar 

  8. Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271:11588–11594

    Article  CAS  Google Scholar 

  9. Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270:4697–4704

    Article  CAS  Google Scholar 

  10. Chouquet A, Paidassi H, Ling WL, Frachet P, Houen G, Arlaud GJ, Gaboriaud C (2011) X-ray structure of the human calreticulin globular domain reveals a peptide-binding area and suggests a multi-molecular mechanism. PLoS One 6:e17886. https://doi.org/10.1371/journal.pone.0017886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, Gehring K (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620. https://doi.org/10.1074/jbc.M110.168294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M, Thomas DY, Cygler M (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8:633–644

    Article  CAS  Google Scholar 

  13. Cummings RD, Etzler ME, Surolia A (2017) L-type lectins. In: Varki A, Cummings RD, Esko JD et al. (eds) Essentials of glycobiology [Internet], 3rd edn. Cold Spring Harbor (NY). https://doi.org/10.1101/glycobiology.3e.032

  14. Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB (1999) Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 4:331–341

    Article  CAS  Google Scholar 

  15. Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718–6729. https://doi.org/10.1093/emboj/18.23.6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiuff C, Houen G (1996) Cation-dependent interactions of calreticulin with denatured and native proteins. Acta Chem Scand 50:788–795

    Article  CAS  Google Scholar 

  17. Danilczyk UG, Williams DB (2001) The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J Biol Chem 276:25532–25540. https://doi.org/10.1074/jbc.M100270200

    Article  CAS  PubMed  Google Scholar 

  18. Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615–623. https://doi.org/10.1242/jcs.02856

    Article  CAS  PubMed  Google Scholar 

  19. Boelt SG, Norn C, Rasmussen MI, Andre I, Ciplys E, Slibinskas R, Houen G, Hojrup P (2016) Mapping the Ca(2+) induced structural change in calreticulin. J Proteome 142:138–148. https://doi.org/10.1016/j.jprot.2016.05.015

    Article  CAS  Google Scholar 

  20. Lum R, Ahmad S, Hong SJ, Chapman DC, Kozlov G, Williams DB (2016) Contributions of the lectin and polypeptide binding sites of calreticulin to its chaperone functions in vitro and in cells. J Biol Chem 291:19631–19641. https://doi.org/10.1074/jbc.M116.746321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moreau C, Cioci G, Iannello M, Laffly E, Chouquet A, Ferreira A, Thielens NM, Gaboriaud C (2016) Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties. IUCrJ 3:408–419. https://doi.org/10.1107/S2052252516012847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan Y, Chen M, Li Z, Mabuchi K, Bouvier M (2006) The calcium- and zinc-responsive regions of calreticulin reside strictly in the N-/C-domain. Biochim Biophys Acta 1760:745–753. https://doi.org/10.1016/j.bbagen.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  23. Wijeyesakere SJ, Gafni AA, Raghavan M (2011) Calreticulin is a thermostable protein with distinct structural responses to different divalent cation environments. J Biol Chem 286:8771–8785. https://doi.org/10.1074/jbc.M110.169193

    Article  CAS  PubMed  Google Scholar 

  24. Ellgaard L, Riek R, Herrmann T, Guntert P, Braun D, Helenius A, Wuthrich K (2001) NMR structure of the calreticulin P-domain. Proc Natl Acad Sci U S A 98:3133–3138. https://doi.org/10.1073/pnas.051630098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozlov G, Munoz-Escobar J, Castro K, Gehring K (2017) Mapping the ER Interactome: the P domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones. Structure 25:1415–1422.e3. https://doi.org/10.1016/j.str.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  26. Nakao H, Seko A, Ito Y, Sakono M (2017) PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun 487:763–767. https://doi.org/10.1016/j.bbrc.2017.04.139

    Article  CAS  PubMed  Google Scholar 

  27. Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88

    Article  CAS  Google Scholar 

  28. Eggleton P, Bremer E, Dudek E, Michalak M (2016) Calreticulin, a therapeutic target? Expert Opin Ther Targets 20:1137–1147. https://doi.org/10.1517/14728222.2016.1164695

    Article  CAS  PubMed  Google Scholar 

  29. Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R, Levett A, Sullivan K, Kao KS, Markovic M, Bump PA, Jackson HM, Choi TS, Chen J, Banuelos AM, Liu J, Gip P, Cheng L, Wang D, Weissman IL (2018) Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 9:3194. https://doi.org/10.1038/s41467-018-05211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merlinsky TR, Levine RL, Pronier E (2019) Unfolding the role of calreticulin in myeloproliferative neoplasm pathogenesis. Clin Cancer Res 25:2956. https://doi.org/10.1158/1078-0432.CCR-18-3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Totani K, Ihara Y, Matsuo I, Koshino H, Ito Y (2005) Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase. Angew Chem Int Ed 44:7950–7954. https://doi.org/10.1002/anie.200502723

    Article  CAS  Google Scholar 

  32. Stronge VS, Saito Y, Ihara Y, Williams DB (2001) Relationship between calnexin and BiP in suppressing aggregation and promoting refolding of protein and glycoprotein substrates. J Biol Chem 276:39779–39787. https://doi.org/10.1074/jbc.M107091200

    Article  CAS  PubMed  Google Scholar 

  33. Li YT (1967) Studies on the glycosidases in jack bean meal. I. Isolation and properties of alpha-mannosidase. J Biol Chem 242:5474–5480

    CAS  PubMed  Google Scholar 

  34. Kageyama K, Ihara Y, Goto S, Urata Y, Toda G, Yano K, Kondo T (2002) Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem 277:19255–19264. https://doi.org/10.1074/jbc.M112377200

    Article  CAS  PubMed  Google Scholar 

  35. Gnanesh Kumar BS, Pohlentz G, Schulte M, Mormann M, Siva Kumar N (2014) Jack bean alpha-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24:252–261. https://doi.org/10.1093/glycob/cwt106

    Article  CAS  PubMed  Google Scholar 

  36. Kimura Y, Hess D, Sturm A (1999) The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. Eur J Biochem 264:168–175

    Article  CAS  Google Scholar 

  37. Thomson SP, Williams DB (2005) Delineation of the lectin site of the molecular chaperone calreticulin. Cell Stress Chaperones 10:242–251

    Article  CAS  Google Scholar 

  38. Ohta M, Hamako J, Yamamoto S, Hatta H, Kim M, Yamamoto T, Oka S, Mizuochi T, Matsuura F (1991) Structures of asparagine-linked oligosaccharides from hen egg-yolk antibody (IgY). Occurrence of unusual glucosylated oligo-mannose type oligosaccharides in a mature glycoprotein. Glycoconj J 8:400–413

    Article  CAS  Google Scholar 

  39. Patil AR, Thomas CJ, Surolia A (2000) Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, calreticulin, with monoglucosylated (Glc1Man9GlcNAc2) substrate. J Biol Chem 275:24348–24356. https://doi.org/10.1074/jbc.M003102200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Ihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ihara, Y., Ikezaki, M., Takatani, M., Ito, Y. (2020). Calnexin/Calreticulin and Assays Related to N-Glycoprotein Folding In Vitro. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics