Skip to main content

Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System

  • Protocol
  • First Online:
Animal Models of Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2128))

Abstract

Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.

Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.

This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A 79(11):3398–3402

    Article  CAS  Google Scholar 

  2. McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6(10):3357–3367

    Article  CAS  Google Scholar 

  3. Tahimic CGTS, Sakurai K, Aiba K, Nakatsuji N (2013) Cre/loxP, Flp/FRT systems and pluripotent stem cell lines. In: Renault SD, Duchateau P (eds) Site-directed insertion of transgenes, Topics in current genetics, vol 23, pp 189–209. https://doi.org/10.1007/978-94-007-4531-5_7

    Chapter  Google Scholar 

  4. Zhang J, Zhao J, Jiang WJ, Shan XW, Yang XM, Gao JG (2012) Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B 13(7):511–524. https://doi.org/10.1631/jzus.B1200042

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ringrose L, Lounnas V, Ehrlich L, Buchholz F, Wade R, Stewart AF (1998) Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 284(2):363–384. https://doi.org/10.1006/jmbi.1998.2149

    Article  CAS  PubMed  Google Scholar 

  6. BCBC (2015) Beta cell biology consortium resource catalog. http://www.betacell.org. Accessed 08 Aug 2019

  7. IMSR (2019) International mouse strain resource. http://www.findmice.org. Accessed 08 Aug 2019

  8. Magnuson MA, Osipovich AB (2013) Pancreas-specific Cre driver lines and considerations for their prudent use. Cell Metab 18(1):9–20. https://doi.org/10.1016/j.cmet.2013.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson JD (2014) A practical guide to genetic engineering of pancreatic beta-cells in vivo: getting a grip on RIP and MIP. Islets 6(3):e944439. https://doi.org/10.4161/19382014.2014.944439

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song J, Xu Y, Hu X, Choi B, Tong Q (2010) Brain expression of Cre recombinase driven by pancreas-specific promoters. Genesis 48(11):628–634. https://doi.org/10.1002/dvg.20672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, Dickson LM, Tamarina NA, Philipson LH, Shostak A, Bernal-Mizrachi E, Elghazi L, Roe MW, Labosky PA, Myers MG Jr, Gannon M, Powers AC, Dempsey PJ (2010) Conditional gene targeting in mouse pancreatic ss-Cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59(12):3090–3098. https://doi.org/10.2337/db10-0624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong GC, Fan WZ, Li DZ, Tian X, Chen SJ, Fu YC, Xu WC, Wei CJ (2015) Increased specific labeling of INS-1 pancreatic beta-cell by using RIP-driven Cre mutants with reduced activity. PLoS One 10(6):e0129092. https://doi.org/10.1371/journal.pone.0129092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281(5):2649–2653. https://doi.org/10.1074/jbc.M512373200

    Article  CAS  PubMed  Google Scholar 

  14. Pomplun D, Florian S, Schulz T, Pfeiffer AF, Ristow M (2007) Alterations of pancreatic beta-cell mass and islet number due to Ins2-controlled expression of Cre recombinase: RIP-Cre revisited; part 2. Horm Metab Res 39(5):336–340. https://doi.org/10.1055/s-2007-976538

    Article  CAS  PubMed  Google Scholar 

  15. Teitelman G, Kedees M (2015) Mouse insulin cells expressing an inducible RIPCre transgene are functionally impaired. J Biol Chem 290(6):3647–3653. https://doi.org/10.1074/jbc.M114.615484

    Article  CAS  PubMed  Google Scholar 

  16. Bernardo AS, Hay CW, Docherty K (2008) Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 294(1–2):1–9. https://doi.org/10.1016/j.mce.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  17. Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127(11):2317–2322

    CAS  PubMed  Google Scholar 

  18. Wiebe PO, Kormish JD, Roper VT, Fujitani Y, Alston NI, Zaret KS, Wright CV, Stein RW, Gannon M (2007) Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol 27(11):4093–4104. https://doi.org/10.1128/MCB.01978-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Fujitani Y, Wright CV, Gannon M (2005) Efficient recombination in pancreatic islets by a tamoxifen-inducible Cre-recombinase. Genesis 42(3):210–217. https://doi.org/10.1002/gene.20137

    Article  CAS  PubMed  Google Scholar 

  20. Hara M, Wang X, Kawamura T, Bindokas VP, Dizon RF, Alcoser SY, Magnuson MA, Bell GI (2003) Transgenic mice with green fluorescent protein-labeled pancreatic beta -cells. Am J Physiol Endocrinol Metab 284(1):E177–E183. https://doi.org/10.1152/ajpendo.00321.2002

    Article  CAS  PubMed  Google Scholar 

  21. Tamarina NA, Roe MW, Philipson L (2014) Characterization of mice expressing Ins1 gene promoter driven CreERT recombinase for conditional gene deletion in pancreatic beta-cells. Islets 6(1):e27685. https://doi.org/10.4161/isl.27685

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci U S A 101(8):2458–2463

    Article  CAS  Google Scholar 

  23. Szabat M, Pourghaderi P, Soukhatcheva G, Verchere CB, Warnock GL, Piret JM, Johnson JD (2011) Kinetics and genomic profiling of adult human and mouse beta-cell maturation. Islets 3(4):175–187

    Article  Google Scholar 

  24. Hay CW, Docherty K (2006) Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes 55(12):3201–3213. https://doi.org/10.2337/db06-0788

    Article  CAS  PubMed  Google Scholar 

  25. Roderigo-Milne H, Hauge-Evans AC, Persaud SJ, Jones PM (2002) Differential expression of insulin genes 1 and 2 in MIN6 cells and pseudoislets. Biochem Biophys Res Commun 296(3):589–595

    Article  CAS  Google Scholar 

  26. Oropeza D, Jouvet N, Budry L, Campbell JE, Bouyakdan K, Lacombe J, Perron G, Bergeron V, Neuman JC, Brar HK, Fenske RJ, Meunier C, Sczelecki S, Kimple ME, Drucker DJ, Screaton RA, Poitout V, Ferron M, Alquier T, Estall JL (2015) Phenotypic characterization of MIP-CreERT1Lphi mice with transgene-driven islet expression of human growth hormone. Diabetes 64(11):3798–3807. https://doi.org/10.2337/db15-0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brouwers B, de Faudeur G, Osipovich AB, Goyvaerts L, Lemaire K, Boesmans L, Cauwelier EJ, Granvik M, Pruniau VP, Van Lommel L, Van Schoors J, Stancill JS, Smolders I, Goffin V, Binart N, in’t Veld P, Declercq J, Magnuson MA, Creemers JW, Schuit F, Schraenen A (2014) Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 20(6):979–990. https://doi.org/10.1016/j.cmet.2014.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carboneau BA, Le TD, Dunn JC, Gannon M (2016) Unexpected effects of the MIP-CreER transgene and tamoxifen on beta-cell growth in C57Bl6/J male mice. Physiol Rep 4(18). https://doi.org/10.14814/phy2.12863

  29. Kim H, Kim H, Kim K, German MS, Kim H (2018) Ectopic serotonin production in beta-cell specific transgenic mice. Biochem Biophys Res Commun 495(2):1986–1991. https://doi.org/10.1016/j.bbrc.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  30. Thorens B, Tarussio D, Maestro MA, Rovira M, Heikkila E, Ferrer J (2015) Ins1(Cre) knock-in mice for beta cell-specific gene recombination. Diabetologia 58(3):558–565. https://doi.org/10.1007/s00125-014-3468-5

    Article  CAS  PubMed  Google Scholar 

  31. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551

    Article  CAS  Google Scholar 

  32. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769

    Article  CAS  Google Scholar 

  33. Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CT (2014) Contribution of a non-beta-cell source to beta-cell mass during pregnancy. PLoS One 9(6):e100398. https://doi.org/10.1371/journal.pone.0100398

    Article  PubMed  PubMed Central  Google Scholar 

  34. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92(15):6991–6995

    Article  CAS  Google Scholar 

  35. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    Article  CAS  Google Scholar 

  36. Tian Y, James S, Zuo J, Fritzsch B, Beisel KW (2006) Conditional and inducible gene recombineering in the mouse inner ear. Brain Res 1091(1):243–254. https://doi.org/10.1016/j.brainres.2006.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chow LM, Tian Y, Weber T, Corbett M, Zuo J, Baker SJ (2006) Inducible Cre recombinase activity in mouse cerebellar granule cell precursors and inner ear hair cells. Dev Dyn 235(11):2991–2998. https://doi.org/10.1002/dvdy.20948

    Article  CAS  PubMed  Google Scholar 

  38. Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34(3):208–214. https://doi.org/10.1002/gene.10153

    Article  CAS  PubMed  Google Scholar 

  39. Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lubbert H, Bujard H (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A 93(20):10933–10938

    Article  CAS  Google Scholar 

  40. Agha-Mohammadi S, O'Malley M, Etemad A, Wang Z, Xiao X, Lotze MT (2004) Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J Gene Med 6(7):817–828. https://doi.org/10.1002/jgm.566

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Suckale J, Masjkur J, Magro MG, Steffen A, Anastassiadis K, Solimena M (2010) Tamoxifen-independent recombination in the RIP-CreER mouse. PLoS One 5(10):e13533. https://doi.org/10.1371/journal.pone.0013533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel SH, O'Hara L, Atanassova N, Smith SE, Curley MK, Rebourcet D, Darbey AL, Gannon AL, Sharpe RM, Smith LB (2017) Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics. Sci Rep 7(1):8991. https://doi.org/10.1038/s41598-017-09016-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bersell K, Choudhury S, Mollova M, Polizzotti BD, Ganapathy B, Walsh S, Wadugu B, Arab S, Kuhn B (2013) Moderate and high amounts of tamoxifen in alphaMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis Model Mech 6(6):1459–1469. https://doi.org/10.1242/dmm.010447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koitabashi N, Bedja D, Zaiman AL, Pinto YM, Zhang M, Gabrielson KL, Takimoto E, Kass DA (2009) Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res 105(1):12–15. https://doi.org/10.1161/CIRCRESAHA.109.198416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong ZA, Sun W, Chen H, Zhang H, Lay YE, Lane NE, Yao W (2015) Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone 81:614–619. https://doi.org/10.1016/j.bone.2015.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guillaume M, Handgraaf S, Fabre A, Raymond-Letron I, Riant E, Montagner A, Vinel A, Buscato M, Smirnova N, Fontaine C, Guillou H, Arnal JF, Gourdy P (2017) Selective activation of estrogen receptor alpha activation function-1 is sufficient to prevent obesity, steatosis, and insulin resistance in mouse. Am J Pathol 187(6):1273–1287. https://doi.org/10.1016/j.ajpath.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  47. Ye R, Wang QA, Tao C, Vishvanath L, Shao M, McDonald JG, Gupta RK, Scherer PE (2015) Impact of tamoxifen on adipocyte lineage tracing: inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol Metab 4(11):771–778. https://doi.org/10.1016/j.molmet.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morimoto M, Kopan R (2009) rtTA toxicity limits the usefulness of the SP-C-rtTA transgenic mouse. Dev Biol 325(1):171–178. https://doi.org/10.1016/j.ydbio.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  49. Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54(4):773–794. https://doi.org/10.1016/j.jhep.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  50. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM, Deplancke B, Houtkooper RH, Auwerx J (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.034

  51. Yin J, Zhang XX, Wu B, Xian Q (2015) Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology 24(10):2125–2132. https://doi.org/10.1007/s10646-015-1540-7

    Article  CAS  PubMed  Google Scholar 

  52. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  Google Scholar 

  53. Szczepankowska A (2012) Role of CRISPR/cas system in the development of bacteriophage resistance. Adv Virus Res 82:289–338. https://doi.org/10.1016/B978-0-12-394621-8.00011-X

    Article  CAS  PubMed  Google Scholar 

  54. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist's practical guide to CRISPR applications. Genetics 199(1):1–15. https://doi.org/10.1534/genetics.114.169771

    Article  CAS  PubMed  Google Scholar 

  55. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18(1):92. https://doi.org/10.1186/s13059-017-1220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 19(1):25. https://doi.org/10.1186/s13059-018-1400-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burgio G (2018) Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology. Genome Biol 19(1):27. https://doi.org/10.1186/s13059-018-1409-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramirez-Dominguez M (2016) Isolation of mouse pancreatic islets of langerhans. Adv Exp Med Biol 938:25–34. https://doi.org/10.1007/978-3-319-39824-2_3

    Article  PubMed  Google Scholar 

  59. Biassoni R, Raso A (2016) Quantitative real-time PCR: methods and protocols. Springer, New York

    Google Scholar 

  60. Kalyuzhny AE (2017) Signal transduction immunohistochemistry : methods and protocols. Methods in molecular biology, 2nd edn. Humana Press, New York, NY, p 1554. 9781493967575

    Book  Google Scholar 

  61. Kurien BT, Scofield RH (2006) Western blotting. Methods 38(4):283–293. https://doi.org/10.1016/j.ymeth.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  62. Lin F, Prichard J (2015) Handbook of practical immunohistochemistry: frequently asked questions, 2nd edn. Springer, New York

    Google Scholar 

  63. Loughna S, Henderson D (2007) Methodologies for staining and visualisation of beta-galactosidase in mouse embryos and tissues. Methods Mol Biol 411:1–11

    Article  CAS  Google Scholar 

  64. Bonaparte D, Cinelli P, Douni E, Herault Y, Maas M, Pakarinen P, Poutanen M, Lafuente MS, Scavizzi F, Federation of European Laboratory Animal Science Associations Working Group (2013) FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents: a report of the Federation of European Laboratory Animal Science Associations Working Group. Lab Anim 47(3):134–145. https://doi.org/10.1177/0023677212473918

    Article  CAS  PubMed  Google Scholar 

  65. Cheng Y, Su Y, Shan A, Jiang X, Ma Q, Wang W, Ning G, Cao Y (2015) Generation and characterization of transgenic mice expressing mouse Ins1 promoter for pancreatic beta-cell-specific gene overexpression and knockout. Endocrinology 156(7):2724–2731. https://doi.org/10.1210/en.2015-1104

    Article  CAS  PubMed  Google Scholar 

  66. Rao P, Monks DA (2009) A tetracycline-inducible and skeletal muscle-specific Cre recombinase transgenic mouse. Dev Neurobiol 69(6):401–406. https://doi.org/10.1002/dneu.20714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lorenz TC (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp 63:e3998. https://doi.org/10.3791/3998

    Article  CAS  Google Scholar 

  68. Sanderson BA, Araki N, Lilley JL, Guerrero G, Lewis LK (2014) Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis. Anal Biochem 454:44–52. https://doi.org/10.1016/j.ab.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mazlan NH, Lopez-Salesansky N, Burn CC, Wells DJ (2014) Mouse identification methods and potential welfare issues: a survey of current practice in the UK. Animal Technology and Welfare 13(1): 1–10

    Google Scholar 

  70. Winberg G (1991) A rapid method for preparing DNA from blood, suited for PCR screening of transgenes in mice. PCR Methods Appl 1(1):72–74

    Article  CAS  Google Scholar 

  71. Schmitteckert EM, Prokop CM, Hedrich HJ (1999) DNA detection in hair of transgenic mice – a simple technique minimizing the distress on the animals. Lab Anim 33(4):385–389. https://doi.org/10.1258/002367799780487922

    Article  CAS  PubMed  Google Scholar 

  72. Meldgaard M, Bollen PJ, Finsen B (2004) Non-invasive method for sampling and extraction of mouse DNA for PCR. Lab Anim 38(4):413–417. https://doi.org/10.1258/0023677041958981

    Article  CAS  PubMed  Google Scholar 

  73. Broome RL, Feng L, Zhou Q, Smith A, Hahn N, Matsui SM, Omary MB (1999) Non-invasive transgenic mouse genotyping using stool analysis. FEBS Lett 462(1–2):159–160

    Article  CAS  Google Scholar 

  74. Chen Z, Mantha RR, Chen JS, Slivano OJ, Takahashi H (2012) Non-invasive genotyping of transgenic animals using fecal DNA. Lab Anim (NY) 41(4):102–107. https://doi.org/10.1038/laban0412-102

    Article  CAS  Google Scholar 

  75. Hamann M, Lange N, Kuschka J, Richter A (2010) Non-invasive genotyping of transgenic mice: comparison of different commercial kits and required amounts. ALTEX 27(3):185–190

    Article  Google Scholar 

  76. Jackson DP, Lewis FA, Taylor GR, Boylston AW, Quirke P (1990) Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J Clin Pathol 43(6):499–504

    Article  CAS  Google Scholar 

  77. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kuhn R, Schwenk F (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res 31(4):e12

    Article  Google Scholar 

  78. Reinert RB, Kantz J, Misfeldt AA, Poffenberger G, Gannon M, Brissova M, Powers AC (2012) Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7(3):e33529. https://doi.org/10.1371/journal.pone.0033529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersson KB, Winer LH, Mork HK, Molkentin JD, Jaisser F (2010) Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic Res 19(4):715–725. https://doi.org/10.1007/s11248-009-9342-4

    Article  CAS  PubMed  Google Scholar 

  80. Cawthorne C, Swindell R, Stratford IJ, Dive C, Welman A (2007) Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subcutaneous xenograft model. J Biomol Tech 18(2):120–123

    PubMed  PubMed Central  Google Scholar 

  81. Redelsperger IM, Taldone T, Riedel ER, Lepherd ML, Lipman NS, Wolf FR (2016) Stability of doxycycline in feed and water and minimal effective doses in tetracycline-inducible systems. J Am Assoc Lab Anim Sci 55(4):467–474

    PubMed  PubMed Central  Google Scholar 

  82. Le YZ, Zheng W, Rao PC, Zheng L, Anderson RE, Esumi N, Zack DJ, Zhu M (2008) Inducible expression of cre recombinase in the retinal pigmented epithelium. Invest Ophthalmol Vis Sci 49(3):1248–1253. https://doi.org/10.1167/iovs.07-1105

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30(23):e134

    Article  Google Scholar 

  84. Sinha M, Lowell CA (2017) Efficiency and specificity of gene deletion in lung epithelial doxycycline-inducible Cre mice. Am J Respir Cell Mol Biol 57(2):248–257. https://doi.org/10.1165/rcmb.2016-0208OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chai OH, Song CH, Park SK, Kim W, Cho ES (2013) Molecular regulation of kidney development. Anat Cell Biol 46(1):19–31. https://doi.org/10.5115/acb.2013.46.1.19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorna I. F. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, L.I.F., Hill, T.G., Bowe, J.E. (2020). Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System. In: King, A. (eds) Animal Models of Diabetes. Methods in Molecular Biology, vol 2128. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0385-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0385-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0384-0

  • Online ISBN: 978-1-0716-0385-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics