Skip to main content

Multicolor Labeling and Tracing of Pancreatic Beta-Cell Proliferation in Zebrafish

  • Protocol
  • First Online:
Animal Models of Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2128))

Abstract

During embryogenesis, beta-cells arise from the dorsal and ventral bud originating in the endoderm germ layer. As the animal develops to adulthood, the beta-cell mass dramatically increases. The expansion of the beta-cell population is driven by cell division among the embryonic beta-cells and supplanted by neogenesis from post-embryonic progenitors. Here, we describe a protocol for multicolor clonal analysis in zebrafish to define the contribution of individual embryonic beta-cells to the increase in cell numbers. This technique provides insights into the proliferative history of individual beta-cells in an islet. This insight helps in defining the replicative heterogeneity among individual beta-cells during development. Additionally, the ability to discriminate individual cells based on unique color signatures helps quantify the volume occupied by beta-cells and define the contribution of cellular size to the beta-cell mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinkel MD, Prince VE (2009) On the diabetic menu: zebrafish as a model for pancreas development and function. BioEssays 31:139–152

    Article  CAS  Google Scholar 

  2. Pisharath H, Rhee JM, Swanson MA et al (2007) Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124:218–229

    Article  CAS  Google Scholar 

  3. Singh SP, Janjuha S, Hartmann T et al (2017) Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth. Nat Commun 8:664

    Article  Google Scholar 

  4. Tehrani Z, Lin S (2011) Endocrine pancreas development in zebrafish. Cell Cycle 10:3466–3472

    Article  CAS  Google Scholar 

  5. Biemar F, Argenton F, Schmidtke R et al (2001) Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230:189–203

    Article  CAS  Google Scholar 

  6. Ninov N, Borius M, Stainier DYR (2012) Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139:1557–1567

    Article  CAS  Google Scholar 

  7. Wang Y, Rovira M, Yusuff S, Parsons MJ (2011) Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells. Development 138:609–617

    Article  CAS  Google Scholar 

  8. Ninov N, Hesselson D, Gut P et al (2013) Metabolic regulation of cellular plasticity in the pancreas. Curr Biol 23:1242–1250

    Article  CAS  Google Scholar 

  9. Hesselson D, Anderson RM, Beinat M, Stainier DYR (2009) Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci U S A 106:14896–14901

    Article  CAS  Google Scholar 

  10. Livet J, T a W, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  Google Scholar 

  11. Loulier K, Barry R, Mahou P et al (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81:505–520

    Article  CAS  Google Scholar 

  12. Thermes V, Grabher C, Ristoratore F et al (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    Article  CAS  Google Scholar 

  13. Grabher C, Joly J-S, Wittbrodt J (2004) Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol 77:381–401

    Article  CAS  Google Scholar 

  14. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:1115

    Google Scholar 

  15. Felker A, Nieuwenhuize S, Dolbois A et al (2016) In vivo performance and properties of Tamoxifen metabolites for CreERT2 control. PLoS One 11:e0152989

    Article  Google Scholar 

  16. Westerfield M (2007) The Zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn., Univ. of Oregon Press, Eugene

    Google Scholar 

  17. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalisation analysis in light microscopy. J Microsc 224:13–232

    Article  Google Scholar 

  18. Cai D, Cohen KB, Luo T et al (2013) Improved tools for the Brainbow toolbox. Nat Methods 10:540–547

    Article  CAS  Google Scholar 

  19. Richardson DSS, Lichtman JWW (2015) Clarifying tissue clearing. Cell 162:246–257

    Article  CAS  Google Scholar 

  20. Pan YA, Freundlich T, Weissman TA et al (2013) Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140:2835–2846

    Article  CAS  Google Scholar 

  21. Hampel S, Chung P, McKellar CE et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We apologize to our colleagues in the field for omitted citations due to restrictions on space and number of references. This work was supported by funding from the DFG–Center for Regenerative Therapies Dresden, Cluster of Excellence at TU Dresden, and the German Center for Diabetes Research (DZD), as well as research grants from the German Research Foundation (DFG), the European Foundation for the Study of Diabetes (EFSD), and the DZD to N.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ninov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, S.P., Ninov, N. (2020). Multicolor Labeling and Tracing of Pancreatic Beta-Cell Proliferation in Zebrafish. In: King, A. (eds) Animal Models of Diabetes. Methods in Molecular Biology, vol 2128. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0385-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0385-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0384-0

  • Online ISBN: 978-1-0716-0385-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics