Skip to main content

Practical Considerations when Using Mouse Models of Diabetes

  • Protocol
  • First Online:
Animal Models of Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2128))

Abstract

Mouse models of diabetes are important tools used in preclinical diabetes research. However, when working with these models, it is important to consider factors that could influence experimental outcome. This is particularly important given the wide variety of models available, each with specific characteristics that could be influenced by extrinsic or intrinsic factors. Blood glucose concentrations, a commonly used and valid endpoint in these models, are particularly susceptible to manipulation by these factors. These include potential effects of intrinsic factors such as strain, sex, and age and extrinsic factors such as husbandry practices and experimental protocols. These variables should therefore be taken into consideration when the model is chosen and the experiments are designed. This chapter outlines common variables that can impact the phenotype of a model, as well as describes the methods used for assessing onset of diabetes and monitoring diabetic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King A, Bowe J (2016) Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol 99:1–10. https://doi.org/10.1016/j.bcp.2015.08.108

    Article  CAS  PubMed  Google Scholar 

  2. King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM (2014) Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222(3):G13–G25. https://doi.org/10.1530/joe-14-0182

    Article  CAS  PubMed  Google Scholar 

  4. Leiter EH (2009) Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 560:1–17. https://doi.org/10.1007/978-1-59745-448-3_1

    Article  CAS  PubMed  Google Scholar 

  5. Morton DB (2000) A systematic approach for establishing humane endpoints. ILAR J 41(2):80–86. https://doi.org/10.1093/ilar.41.2.80

    Article  CAS  PubMed  Google Scholar 

  6. Leiter EH, Schile A (2013) Genetic and pharmacologic models for type 1 diabetes. Curr Protoc Mouse Biol 3(1):9–19. https://doi.org/10.1002/9780470942390.mo120154

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–894. https://doi.org/10.2337/diab.46.5.887

    Article  CAS  PubMed  Google Scholar 

  8. Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 56(5):1268–1276. https://doi.org/10.2337/db06-0658

    Article  CAS  PubMed  Google Scholar 

  9. Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103(24):9232–9237. https://doi.org/10.1073/pnas.0602956103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world--recent facts and figures. Immunol Today 14(5):193–196. https://doi.org/10.1016/0167-5699(93)90160-m

    Article  CAS  PubMed  Google Scholar 

  11. Tiano JP, Mauvais-Jarvis F (2012) Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol 8(6):342–351. https://doi.org/10.1038/nrendo.2011.242

    Article  CAS  PubMed  Google Scholar 

  12. Xu B, Allard C, Alvarez-Mercado AI, Fuselier T, Kim JH, Coons LA, Hewitt SC, Urano F, Korach KS, Levin ER, Arvan P, Floyd ZE, Mauvais-Jarvis F (2018) Estrogens promote misfolded proinsulin degradation to protect insulin production and delay diabetes. Cell Rep 24(1):181–196. https://doi.org/10.1016/j.celrep.2018.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44(1):3–15. https://doi.org/10.1007/s001250051573

    Article  CAS  PubMed  Google Scholar 

  14. Mauvais-Jarvis F (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ 6:14. https://doi.org/10.1186/s13293-015-0033-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233(1):53–64. https://doi.org/10.1530/joe-16-0377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J (2005) Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 187(1):45–53. https://doi.org/10.1677/joe.1.06333

    Article  CAS  PubMed  Google Scholar 

  17. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56(5):1129–1139. https://doi.org/10.1007/s00125-013-2846-8

    Article  CAS  PubMed  Google Scholar 

  18. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466. https://doi.org/10.1242/dmm.001941

    Article  CAS  PubMed  Google Scholar 

  19. Azushima K, Gurley SB, Coffman TM (2018) Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14(1):48–56. https://doi.org/10.1038/nrneph.2017.142

    Article  CAS  PubMed  Google Scholar 

  20. Mi X-S, Yuan T-F, Ding Y, Zhong J-X, So K-F (2014) Choosing preclinical study models of diabetic retinopathy: key problems for consideration. Drug Des Devel Ther 8:2311–2319. https://doi.org/10.2147/DDDT.S72797

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Brien PD, Sakowski SA, Feldman EL (2014) Mouse models of diabetic neuropathy. ILAR J 54(3):259–272. https://doi.org/10.1093/ilar/ilt052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685. https://doi.org/10.1100/tsw.2007.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersson DA, Filipovic MR, Gentry C, Eberhardt M, Vastani N, Leffler A, Reeh P, Bevan S (2015) Streptozotocin stimulates the ion channel TRPA1 directly: involvement of peroxynitrite. J Biol Chem 290(24):15185–15196. https://doi.org/10.1074/jbc.M115.644476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evan AP, Mong SA, Connors BA, Aronoff GR, Luft FC (1984) The effect of alloxan, and alloxan-induced diabetes on the kidney. Anat Rec 208(1):33–47. https://doi.org/10.1002/ar.1092080105

    Article  CAS  PubMed  Google Scholar 

  25. Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, Dickson LM, Tamarina NA, Philipson LH, Shostak A, Bernal-Mizrachi E, Elghazi L, Roe MW, Labosky PA, Myers MG Jr, Gannon M, Powers AC, Dempsey PJ (2010) Conditional gene targeting in mouse pancreatic ss-cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59(12):3090–3098. https://doi.org/10.2337/db10-0624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Francesco PN, Cornejo MP, Barrile F, Garcia Romero G, Valdivia S, Andreoli MF, Perello M (2019) Inter-individual Variability for high fat diet consumption in inbred C57BL/6 Mice. Front Nutr 6:67. https://doi.org/10.3389/fnut.2019.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008

    Article  CAS  PubMed  Google Scholar 

  28. McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297(4):E849–E855. https://doi.org/10.1152/ajpendo.90996.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534. https://doi.org/10.1242/dmm.006239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kappel S, Hawkins P, Mendl MT (2017) To group or not to group? Good practice for housing male laboratory mice. Animals 7(12). https://doi.org/10.3390/ani7120088

  31. Rasmussen S, Miller MM, Filipski SB, Tolwani RJ (2011) Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Animal Sci 50(4):479–483

    CAS  Google Scholar 

  32. Ghosal S, Nunley A, Mahbod P, Lewis AG, Smith EP, Tong J, D’Alessio DA, Herman JP (2015) Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav 150:31–37. https://doi.org/10.1016/j.physbeh.2015.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826. https://doi.org/10.1038/nmeth.1500

    Article  CAS  PubMed  Google Scholar 

  34. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes - a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/j.cbi.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  35. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226. https://doi.org/10.1007/s00125-007-0886-7

    Article  CAS  PubMed  Google Scholar 

  36. King AJ, Austin AL, Nandi M, Bowe JE (2017) Diabetes in rats is cured by islet transplantation...But only during daytime. Cell Transplant 26(1):171–172. https://doi.org/10.3727/096368916X692258

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weitgasser RDAWG (1999) Measurement of glucose concentrations in rats: differences between glucose meter and plasma laboratory results. Diabetologia 42(2):256–256. https://doi.org/10.1007/s001250051147

    Article  CAS  PubMed  Google Scholar 

  39. Peterson RG, Brockway R (2012) Assessment of Nova Biomedical StatStrip® glucose meters and test strips in rodent glucose studies. FASEB J 26(1_supplement):1127.1111. https://doi.org/10.1096/fasebj.26.1_supplement.1127.11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aileen J. F. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

King, A.J.F., Daniels Gatward, L.F., Kennard, M.R. (2020). Practical Considerations when Using Mouse Models of Diabetes. In: King, A. (eds) Animal Models of Diabetes. Methods in Molecular Biology, vol 2128. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0385-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0385-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0384-0

  • Online ISBN: 978-1-0716-0385-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics