Skip to main content

Membrane Protein Production in Lactococcus lactis for Structural Studies

  • Protocol
  • First Online:
Expression, Purification, and Structural Biology of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

The expression and downstream purification of membrane proteins is the prerequisite for biophysical and structural studies of this major source of therapeutic targets. The gram-positive bacterium Lactococcus lactis is an attractive option for heterologous membrane protein expression and purification thanks to advantageous characteristics such as mild proteolytic activity and small genome size. Vectors designed for gene transcription under the control of inducible promoters are readily available. Specifically, the tightly regulated nisin-inducible gene expression system (NICE) allows to fine-tune the overexpression of different gene products. The expressed protein engineered with a suitable tag can be readily detected and purified from crude membrane extracts. The purpose of this protocol chapter is to detail the procedures of cloning, expression, isolation of the membrane vesicles, and affinity purification of a membrane protein of interest in L. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng Y (2018) Membrane protein structural biology in the era of single particle cryo-EM. Curr Opin Struct Biol 52:58–63. https://doi.org/10.1016/j.sbi.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  2. Chavent M, Duncan AL, Sansom MS (2016) Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol 40:8–16. https://doi.org/10.1016/j.sbi.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  3. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK (2016) Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 94(6):507–527. https://doi.org/10.1139/bcb-2015-0143

    Article  CAS  PubMed  Google Scholar 

  4. Kunji ER, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610(1):97–108

    Article  CAS  Google Scholar 

  5. King MS, Boes C, Kunji ER (2015) Membrane protein expression in Lactococcus lactis. Methods Enzymol 556:77–97. https://doi.org/10.1016/bs.mie.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Putman M, van Veen HW, Poolman B, Konings WN (1999) Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Biochemistry 38(3):1002–1008. https://doi.org/10.1021/bi981863w

    Article  CAS  PubMed  Google Scholar 

  7. Monne M, Chan KW, Slotboom DJ, Kunji ER (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 14(12):3048–3056. https://doi.org/10.1110/ps.051689905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frelet-Barrand A, Boutigny S, Moyet L, Deniaud A, Seigneurin-Berny D, Salvi D, Bernaudat F, Richaud P, Pebay-Peyroula E, Joyard J, Rolland N (2010) Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS One 5(1):e8746. https://doi.org/10.1371/journal.pone.0008746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717. https://doi.org/10.1007/s00253-005-0107-6

    Article  CAS  PubMed  Google Scholar 

  10. de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62(10):3662–3667

    Article  Google Scholar 

  11. Song AA, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Factories 16(1):55. https://doi.org/10.1186/s12934-017-0669-x

    Article  CAS  Google Scholar 

  12. Wang W, van Veen HW (2012) Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. PLoS One 7(6):e38715. https://doi.org/10.1371/journal.pone.0038715

    Article  CAS  PubMed  Google Scholar 

  13. Mazurkiewicz P, Poelarends GJ, Driessen AJ, Konings WN (2004) Facilitated drug influx by an energy-uncoupled secondary multidrug transporter. J Biol Chem 279(1):103–108. https://doi.org/10.1074/jbc.M306579200

    Article  CAS  PubMed  Google Scholar 

  14. van den Berg van Saparoea HB, Lubelski J, van Merkerk R, Mazurkiewicz PS, Driessen AJ (2005) Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis. Biochemistry 44(51):16931–16938. https://doi.org/10.1021/bi051497y

    Article  CAS  PubMed  Google Scholar 

  15. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11(5):731–753. https://doi.org/10.1101/gr.169701

    Article  CAS  PubMed  Google Scholar 

  16. Delorme C, Godon JJ, Ehrlich SD, Renault P (1993) Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol 175(14):4391–4399

    Article  CAS  Google Scholar 

  17. Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD, Renault P (1993) Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol 175(14):4383–4390

    Article  CAS  Google Scholar 

  18. Berntsson RP, Alia Oktaviani N, Fusetti F, Thunnissen AM, Poolman B, Slotboom DJ (2009) Selenomethionine incorporation in proteins expressed in Lactococcus lactis. Protein Sci 18(5):1121–1127. https://doi.org/10.1002/pro.97

    Article  CAS  PubMed  Google Scholar 

  19. Hakizimana P, Masureel M, Gbaguidi B, Ruysschaert JM, Govaerts C (2008) Interactions between phosphatidylethanolamine headgroup and LmrP, a multidrug transporter: a conserved mechanism for proton gradient sensing? J Biol Chem 283(14):9369–9376. https://doi.org/10.1074/jbc.M708427200

    Article  CAS  PubMed  Google Scholar 

  20. Masureel M, Martens C, Stein RA, Mishra S, Ruysschaert JM, McHaourab HS, Govaerts C (2014) Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem Biol 10(2):149–155. https://doi.org/10.1038/nchembio.1408

    Article  CAS  PubMed  Google Scholar 

  21. Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H, Javitch JA, Nissen P (2014) A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat Struct Mol Biol 21(11):1006–1012. https://doi.org/10.1038/nsmb.2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geertsma ER, Poolman B (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 4(9):705–707. https://doi.org/10.1038/nmeth1073

    Article  CAS  PubMed  Google Scholar 

  23. Geertsma ER, Poolman B (2010) Production of membrane proteins in Escherichia coli and Lactococcus lactis. Methods Mol Biol 601:17–38. https://doi.org/10.1007/978-1-60761-344-2_2

    Article  CAS  PubMed  Google Scholar 

  24. Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R (1981) Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9(1):r43–r74

    Article  CAS  Google Scholar 

  25. Pedersen MB, Iversen SL, Sorensen KI, Johansen E (2005) The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol Rev 29(3):611–624. https://doi.org/10.1016/j.femsre.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  26. Holo H, Nes IF (1989) High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol 55(12):3119–3123

    Article  CAS  Google Scholar 

  27. Wells JM, Wilson PW, Le Page RW (1993) Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol 74(6):629–636

    Article  CAS  Google Scholar 

  28. Frelet-Barrand A, Boutigny S, Kunji ER, Rolland N (2010) Membrane protein expression in Lactococcus lactis. Methods Mol Biol 601:67–85. https://doi.org/10.1007/978-1-60761-344-2_5

    Article  CAS  PubMed  Google Scholar 

  29. Martens C, Stein RA, Masureel M, Roth A, Mishra S, Dawaliby R, Konijnenberg A, Sobott F, Govaerts C, McHaourab HS (2016) Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol 23(8):744–751. https://doi.org/10.1038/nsmb.3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Findlay HE, Booth PJ (2017) The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition. Sci Rep 7(1):13056. https://doi.org/10.1038/s41598-017-13290-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matthieu Masureel for the small-scale expression tests. We acknowledge support from the Fonds de la Recherche Scientifique (FRS-FNRS) (Grant Number: 1.B.261.19F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martens, C. (2020). Membrane Protein Production in Lactococcus lactis for Structural Studies. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics