Skip to main content

Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy

  • Protocol
  • First Online:
Expression, Purification, and Structural Biology of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

  • 3542 Accesses

Abstract

Atomic force microscopy (AFM)-based single-molecule force spectroscopy allows direct physical manipulation of single membrane proteins under near-physiological conditions. It can be applied to study mechanical properties and molecular interactions as well as unfolding and folding pathways of membrane proteins. Here, we describe the basic procedure to study membrane proteins by single-molecule force spectroscopy and discuss general requirements of the experimental setup as well as common pitfalls typically encountered when working with membrane proteins in AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–934

    Article  CAS  Google Scholar 

  2. Bippes CA, Muller DJ (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Reports Prog Phys 74:086601

    Article  Google Scholar 

  3. Butt HJ, Downing KH, Hansma PK (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J 58:1473–1480

    Article  CAS  Google Scholar 

  4. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  Google Scholar 

  5. Hoogenboom BW, Suda K, Engel A, Fotiadis D (2007) The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255

    Article  CAS  Google Scholar 

  6. Shibata M, Yamashita H, Uchihashi T et al (2010) High-speed atomic force microscopy shows dynamic molecular processes in Photoactivated bacteriorhodopsin. Nat Nanotechnol 5:208–212

    Article  CAS  Google Scholar 

  7. Kedrov A, Janovjak H, Sapra KT, Müller DJ (2007) Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu Rev Biophys Biomol Struct 36:233–260

    Article  CAS  Google Scholar 

  8. Engel A, Gaub HE (2008) Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148

    Article  CAS  Google Scholar 

  9. Oesterhelt F, Oesterhelt D, Pfeiffer M et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  CAS  Google Scholar 

  10. Thoma J, Manioglu S, Kalbermatter D et al (2018) Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies. Commun Biol 1:23

    Article  Google Scholar 

  11. Kedrov A, Ziegler C, Muller DJ (2006) Differentiating ligand and inhibitor interactions of a single antiporter. J Mol Biol 362:925–932

    Article  CAS  Google Scholar 

  12. Bippes CA, Ge L, Meury M et al (2013) Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc Natl Acad Sci U S A 110:E3978–E3986

    Article  CAS  Google Scholar 

  13. Serdiuk T, Sugihara J, Mari SA et al (2015) Observing a lipid-dependent alteration in single lactose permeases. Structure 23:754–761

    Article  CAS  Google Scholar 

  14. Thoma J, Bosshart P, Pfreundschuh M, Müller DJ (2012) Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20:2185–2190

    Article  CAS  Google Scholar 

  15. Kessler M, Gottschalk KE, Janovjak H et al (2006) Bacteriorhodopsin folds into the membrane against an external force. J Mol Biol 357:644–654

    Article  CAS  Google Scholar 

  16. Yu H, Siewny MGW, Edwards DT et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355:945–950

    Article  CAS  Google Scholar 

  17. Kedrov A, Ziegler C, Janovjak H et al (2004) Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. J Mol Biol 340:1143–1152

    Article  CAS  Google Scholar 

  18. Bosshart PD, Iordanov I, Garzon-Coral C et al (2012) The transmembrane protein KpOmpA anchoring the outer membrane of Klebsiella Pneumoniae unfolds and refolds in response to tensile load. Structure 20:121–127

    Article  CAS  Google Scholar 

  19. Thoma J, Burmann BM, Hiller S, Müller DJ (2015) Impact of Holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol 22:795–802

    Article  CAS  Google Scholar 

  20. Serdiuk T, Steudle A, Mari SA et al (2019) Insertion and folding pathways of single membrane proteins guided by translocases and Insertases. Sci Adv 5:eaau6824

    Article  Google Scholar 

  21. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  22. Bosshart PD, Frederix PLTM, Engel A (2012) Reference-free alignment and sorting of single-molecule force spectroscopy data. Biophys J 102:2202–2211

    Article  CAS  Google Scholar 

  23. Thoma J (2017) Unfolding and folding pathways of Escherichia Coli outer membrane proteins. PhD thesis (ETH Zürich). https://doi.org/10.3929/ethz-b-000214458

  24. Galvanetto N, Perissinotto A, Pedroni A, Torre V (2018) Fodis: software for protein unfolding analysis. Biophys J 114:1264–1266

    Article  CAS  Google Scholar 

  25. Müller D, Heymann J, Oesterhelt F et al (2000) Atomic force microscopy of native purple membrane. Biochim Biophys Acta 1460:27–38

    Article  Google Scholar 

  26. Bosshart PD, Casagrande F, Frederix PLTM et al (2008) High-throughput single-molecule force spectroscopy for membrane proteins. Nanotechnology 19:384014

    Article  Google Scholar 

Download references

Acknowledgment

We thank Nico Strohmeyer for proofreading the manuscript. Johannes Thoma was supported by a long-term European Molecular Biology Organization (EMBO) fellowship (ALTF 413-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Thoma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ritzmann, N., Thoma, J. (2020). Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics