Skip to main content

Membrane Protein Production in Escherichia coli

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

Escherichia coli is the workhorse of the structural biology lab. In addition to routine cloning and molecular biology, E. coli can be used as a factory for the production of recombinant membrane proteins. Purification of homogeneous samples of membrane protein expressed in E. coli is a significant bottleneck for researchers, and the protocol we present here for the overexpression and purification of membrane proteins in E. coli will provide a solid basis to develop lab- and protein-specific protocols for your membrane protein of interest. We additionally provide extensive notes on the purification process, as well as the theory surrounding principles of purification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stockbridge RB, Lim HH, Otten R, Williams C, Shane T, Weinberg Z, Miller C (2012) Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc Natl Acad Sci 109(38):15289–15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C (2013) A family of fluoride-specific ion channels with dual-topology architecture. elife 2:e01084

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kermani AA, Macdonald CB, Gundepudi R, Stockbridge RB (2018) Guanidinium export is the primal function of SMR family transporters. Proc Natl Acad Sci 115(12):3060–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McIlwain BC, Newstead S, Stockbridge RB (2018) Cork-in-bottle occlusion of fluoride ion channels by crystallization chaperones. Structure 26(4):635–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marshall SS, Niesen MJ, Müller A, Tiemann K, Saladi SM, Galimidi RP, Zhang B, Clemons WM Jr, Miller TF III (2016) A link between integral membrane protein expression and simulated integration efficiency. Cell Rep 16(8):2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16(13):6127–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24(8):364–371

    Article  CAS  PubMed  Google Scholar 

  9. Hartley JL (2006) Cloning technologies for protein expression and purification. Curr Opin Biotechnol 17(4):359–366

    Article  CAS  PubMed  Google Scholar 

  10. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Studier FW (1997) Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J Mol Biol 269(1):10–27

    Article  CAS  PubMed  Google Scholar 

  12. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298

    Article  CAS  PubMed  Google Scholar 

  13. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, Van Wijk KJ, Slotboom DJ, Persson JO, De Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci 105(38):14371–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlegel S, Löfblom J, Lee C, Hjelm A, Klepsch M, Strous M, Drew D, Slotboom DJ, de Gier JW (2012) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21 (DE3). J Mol Biol 423(4):648–659

    Article  CAS  PubMed  Google Scholar 

  15. Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophy Acta 1666(1–2):105–117

    Article  CAS  Google Scholar 

  17. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276(35):32403–32406

    Article  CAS  PubMed  Google Scholar 

  18. Anandan A, Vrielink A (2016) Detergents in membrane protein purification and crystallisation. In: The Next Generation in Membrane Protein Structure Determination. Springer, Cham, pp 13–28

    Chapter  Google Scholar 

  19. Schimerlik MI (1998) Overview of membrane protein solubilization. Curr Protoc Neurosci 2(1):5–9

    Article  Google Scholar 

  20. Wang H, Elferich J, Gouaux E (2012) Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol 19(2):212

    Article  PubMed  PubMed Central  Google Scholar 

  21. Quick M, Shi L, Zehnpfennig B, Weinstein H, Javitch JA (2012) Experimental conditions can obscure the second high-affinity site in LeuT. Nat Struct Mol Biol 19(2):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14(4):673–681

    Article  CAS  PubMed  Google Scholar 

  23. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20(8):1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bird LE, Rada H, Verma A, Gasper R, Birch J, Jennions M, Lӧwe J, Moraes I, Owens RJ (2015) Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli. J Vis Exp 95:e52357

    Google Scholar 

  25. Kosobokova EN, Skrypnik KA, Kosorukov VS (2016) Overview of fusion tags for recombinant proteins. Biochem Mosc 81(3):187–200

    Article  CAS  Google Scholar 

  26. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80(2):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank Randy Stockbridge as well as other members of the Stockbridge lab for helpful suggestions, guidance, and feedback on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin C. McIlwain or Ali A. Kermani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McIlwain, B.C., Kermani, A.A. (2020). Membrane Protein Production in Escherichia coli. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics