Skip to main content

Production and Application of Nanobodies for Membrane Protein Structural Biology

  • Protocol
  • First Online:
Expression, Purification, and Structural Biology of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

Nanobodies, small recombinant binders derived from camelid single chain antibodies, have become widely used tools in a diversity of disciplines related to membrane proteins. They are applied as chaperones in crystallization and blockers or modifiers of protein activity among numerous other applications. Their simple architecture as a single polypeptide chain, in contrast to classical antibodies, enables straightforward cloning, library generation, and recombinant expression. The small diameter and the pointed wedge-like shape of the antigen-binding site underlies binding to hollows and crevices of membrane proteins and renders nanobodies often conformation specific making them a preferred type of chaperone. Here we describe a simple protocol for the recombinant production of nanobodies in E. coli and their purification. We expand the current repertoire of usage further by describing a procedure for enlarging nanobodies on their C-terminal end to generate “macrobodies,” without interfering with their original characteristics. These enlarged nanobodies extend the application as a chaperone in crystallography and can serve to increase the mass for small targets in single particle electron cryo-microscopy, a field where nanobodies had so far only limited effect because of their small size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muyldermans S (2013) Nanobodies: Natural Single-Domain Antibodies. Annu Rev Biochem 82(1):775–797. https://doi.org/10.1146/annurev-biochem-063011-092449

    Article  CAS  PubMed  Google Scholar 

  2. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9(3):674–693. https://doi.org/10.1038/nprot.2014.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zimmermann I, Egloff P, Hutter CAJ, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L, Gera J, Gmür S, Spies P, Gygax D, Geertsma ER, Dawson RJP, Seeger MA (2018) Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife 7:e34317. https://doi.org/10.7554/eLife.34317

    Article  PubMed  PubMed Central  Google Scholar 

  4. McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, Erlandson SC, Hilger D, Rasmussen SGF, Ring AM, Manglik A, Kruse AC (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25(3):289–296. https://doi.org/10.1038/s41594-018-0028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wingler LM, McMahon C, Staus DP, Lefkowitz RJ, Kruse AC (2019) Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell 176(3):479–490.e412. https://doi.org/10.1016/j.cell.2018.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rasmussen SGF, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469(7329):175–180. https://doi.org/10.1038/nature09648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirchhofer A, Helma J, Schmidthals K, Frauer C, Cui S, Karcher A, Pellis M, Muyldermans S, Casas-Delucchi CS, Cardoso MC, Leonhardt H, Hopfner K-P, Rothbauer U (2009) Modulation of protein properties in living cells using nanobodies. Nat Struct Mol Biol 17:133. https://doi.org/10.1038/nsmb.1727. https://www.nature.com/articles/nsmb.1727#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  8. Schenck S, Kunz L, Sahlender D, Pardon E, Geertsma ER, Savtchouk I, Suzuki T, Neldner Y, Štefanić S, Steyaert J, Volterra A, Dutzler R (2017) Generation and characterization of anti-VGLUT nanobodies acting as inhibitors of transport. Biochemistry 56(30):3962–3971. https://doi.org/10.1021/acs.biochem.7b00436

    Article  CAS  PubMed  Google Scholar 

  9. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SGF, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538. https://doi.org/10.1038/nature12000

    Article  CAS  PubMed  Google Scholar 

  10. Traenkle B, Rothbauer U (2017) Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Front Immunol 8:1030–1030. https://doi.org/10.3389/fimmu.2017.01030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kubala MH, Kovtun O, Alexandrov K, Collins BM (2010) Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci 19(12):2389–2401. https://doi.org/10.1002/pro.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schellenberg MJ, Petrovich RM, Malone CC, Williams RS (2018) Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support. Protein Sci 27(6):1083–1092. https://doi.org/10.1002/pro.3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stortelers C, Pinto-Espinoza C, Van Hoorick D, Koch-Nolte F (2018) Modulating ion channel function with antibodies and nanobodies. Curr Opin Immunol 52:18–26. https://doi.org/10.1016/j.coi.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  14. Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S (2017) Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers. Front Immunol 8:1746–1746. https://doi.org/10.3389/fimmu.2017.01746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saerens D, Ghassabeh GH, Muyldermans S (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 8(5):600–608. https://doi.org/10.1016/j.coph.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, Dutzler R (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 21:990–996. https://doi.org/10.1038/nsmb.2904

    Article  CAS  PubMed  Google Scholar 

  17. Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808. https://doi.org/10.1038/nsmb.3091

    Article  CAS  PubMed  Google Scholar 

  18. Kumar H, Finer-Moore JS, Jiang X, Smirnova I, Kasho V, Pardon E, Steyaert J, Kaback HR, Stroud RM (2018) Crystal Structure of a ligand-bound LacY-Nanobody Complex. Proc Natl Acad Sci U S A 115(35):8769–8774. https://doi.org/10.1073/pnas.1801774115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ural-Blimke Y, Flayhan A, Strauss J, Rantos V, Bartels K, Nielsen R, Pardon E, Steyaert J, Kosinski J, Quistgaard EM, Löw C (2019) Structure of Prototypic Peptide Transporter DtpA from E. coli in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. J Am Chem Soc 141(6):2404–2412. https://doi.org/10.1021/jacs.8b11343

    Article  CAS  PubMed  Google Scholar 

  20. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee M-Y, Pardon E, Steyaert J, Huang X-P, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172(1–2):55–67.e15. https://doi.org/10.1016/j.cell.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laeremans T, Steyaert J, Tarrasch J, Dutta S, Fonseca R, Weis WI, Mathiesen JM, Skiniotis G, Kobilka BK (2019) Structural insights into the activation of metabotropic glutamate receptors. Nature 566(7742):79–84. https://doi.org/10.1038/s41586-019-0881-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunner JD, Jakob RP, Schulze T, Neldner Y, Moroni A, Thiel G, Maier T, Schenck S (2018) Structural basis for ion selectivity in TMEM175 K+ channels. https://doi.org/10.1101/480863

  23. Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L (2018) X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature 559(7715):575–579. https://doi.org/10.1038/s41586-018-0330-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li X-D, Poitevin F, Vogel H, Nury H (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512:276. https://doi.org/10.1038/nature13552. https://www.nature.com/articles/nature13552#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  25. Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS (2019) The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176(3):435–447.e415. https://doi.org/10.1016/j.cell.2018.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bräuer P, Parker JL, Gerondopoulos A, Zimmermann I, Seeger MA, Barr FA, Newstead S (2019) Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363(6431):1103–1107. https://doi.org/10.1126/science.aaw2859

    Article  CAS  PubMed  Google Scholar 

  27. Perez C, Köhler M, Janser D, Pardon E, Steyaert J, Zenobi R, Locher KP (2017) Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Sci Rep 7:46641–46641. https://doi.org/10.1038/srep46641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waugh DS (2016) Crystal structures of MBP fusion proteins. Protein Sci 25(3):559–571. https://doi.org/10.1002/pro.2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laverty D, Desai R, Uchański T, Masiulis S, Stec WJ, Malinauskas T, Zivanov J, Pardon E, Steyaert J, Miller KW, Aricescu AR (2019) Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565(7740):516–520. https://doi.org/10.1038/s41586-018-0833-4

    Article  CAS  PubMed  Google Scholar 

  30. Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu AR (2019) GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565(7740):454–459. https://doi.org/10.1038/s41586-018-0832-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pleiner T, Bates M, Trakhanov S, Lee C-T, Schliep JE, Chug H, Böhning M, Stark H, Urlaub H, Görlich D (2015) Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. elife 4:e11349–e11349. https://doi.org/10.7554/eLife.11349

    Article  PubMed  PubMed Central  Google Scholar 

  32. Salema V, Fernández LÁ (2013) High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Protein Expr Purif 91(1):42–48. https://doi.org/10.1016/j.pep.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  33. Geertsma ER, Dutzler R (2011) A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50(15):3272–3278. https://doi.org/10.1021/bi200178z

    Article  CAS  PubMed  Google Scholar 

  34. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28. https://doi.org/10.1016/0378-1119(90)90336-P

    Article  CAS  PubMed  Google Scholar 

  35. Geertsma ER, Groeneveld M, Slotboom D-J, Poolman B (2008) Quality control of overexpressed membrane proteins. Proc Natl Acad Sci U S A 105(15):5722–5727. https://doi.org/10.1073/pnas.0802190105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Denise Brunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brunner, J.D., Schenck, S. (2020). Production and Application of Nanobodies for Membrane Protein Structural Biology. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics