Skip to main content

Antigenic Cartography: Overview and Current Developments

  • Protocol
  • First Online:
Animal Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2123))

Abstract

Antigenic cartography is a powerful method that allows for the calculation of antigenic distances between influenza viruses or sera and their positioning on a map, by quantifying raw data from hemagglutination inhibition assays. As a consequence, the antigenic drift of influenza viruses over time can be visualized in a straightforward manner. Antigenic cartography is not only useful in the research of influenza virus evolution but also in the surveillance of influenza viruses. Most importantly, antigenic cartography plays a very important role in vaccine updating decisions, since by calculating the antigenic distances between a vaccine strain and circulating strains, an informed decision can be made on whether the distances are large enough to warrant a vaccine update or not. Recent improvements in antigenic cartography calculations have significantly improved its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelstein L, Rosen R (1978) Enzyme-substrate recognition. J Theor Biol 73(1):181–204

    Article  CAS  Google Scholar 

  2. Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol 81(4):645–670

    Article  CAS  Google Scholar 

  3. Lapedes A, Farber R (2001) The geometry of shape space: application to influenza. J Theor Biol 212(1):57–69. https://doi.org/10.1006/jtbi.2001.2347

    Article  CAS  PubMed  Google Scholar 

  4. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376. https://doi.org/10.1126/science.1097211

    Article  CAS  PubMed  Google Scholar 

  5. Fouchier RA, Smith DJ (2010) Use of antigenic cartography in vaccine seed strain selection. Avian Dis 54(1 Suppl):220–223

    Article  Google Scholar 

  6. Comin A, Toft N, Stegeman A, Klinkenberg D, Marangon S (2013) Serological diagnosis of avian influenza in poultry: is the haemagglutination inhibition test really the ‘gold standard’? Influenza Other Respir Viruses 7(3):257–264. https://doi.org/10.1111/j.1750-2659.2012.00391.x

    Article  CAS  PubMed  Google Scholar 

  7. Noah DL, Hill H, Hines D, White EL, Wolff MC (2009) Qualification of the hemagglutination inhibition assay in support of pandemic influenza vaccine licensure. Clin Vaccine Immunol 16(4):558–566. https://doi.org/10.1128/CVI.00368-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Fang VJ, Ohmit SE, Monto AS, Cook AR, Cowling BJ (2016) Quantifying protection against influenza virus infection measured by hemagglutination-inhibition assays in vaccine trials. Epidemiology 27(1):143–151. https://doi.org/10.1097/EDE.0000000000000402

    Article  PubMed  Google Scholar 

  9. Sitaras I, Rousou X, Kalthoff D, Beer M, Peeters B, de Jong MC (2016) Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1. J R Soc Interface 13(114):20150976. https://doi.org/10.1098/rsif.2015.0976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sitaras I, Rousou X, Peeters B, de Jong MCM (2016) Mutations in the haemagglutinin protein and their effect in transmission of highly pathogenic avian influenza (HPAI) H5N1 virus in sub-optimally vaccinated chickens. Vaccine 34(46):5512–5518. https://doi.org/10.1016/j.vaccine.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Kumar M, Chu HJ, Rodenberg J, Krauss S, Webster RG (2007) Association of serologic and protective responses of avian influenza vaccines in chickens. Avian Dis 51(1 Suppl):481–483. https://doi.org/10.1637/7605-041706R1.1

    Article  PubMed  Google Scholar 

  12. Swayne DE, Suarez DL, Spackman E, Jadhao S, Dauphin G, Kim-Torchetti M, McGrane J, Weaver J, Daniels P, Wong F, Selleck P, Wiyono A, Indriani R, Yupiana Y, Sawitri Siregar E, Prajitno T, Smith D, Fouchier R (2015) Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. J Virol 89(7):3746–3762. https://doi.org/10.1128/JVI.00025-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian G, Zeng X, Li Y, Shi J, Chen H (2010) Protective efficacy of the H5 inactivated vaccine against different highly pathogenic H5N1 avian influenza viruses isolated in China and Vietnam. Avian Dis 54(1 Suppl):287–289

    Article  Google Scholar 

  14. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Jones TC, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mutations, drift, and the influenza archipelago. Discov Med 4(24):371–377

    PubMed  Google Scholar 

  15. Smith DJ (2006) Predictability and preparedness in influenza control. Science 312(5772):392–394. https://doi.org/10.1126/science.1122665

    Article  CAS  PubMed  Google Scholar 

  16. Sitaras I, Kalthoff D, Beer M, Peeters B, de Jong MC (2014) Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein. PLoS One 9(2):e84628. https://doi.org/10.1371/journal.pone.0084628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sitaras I, Duijzer M, Peeters B, de Jong MC (2020) Influence of inter-animal variability of HI titers on antigenic cartography in the study of avian influenza viruses: towards making a better map. Heliyon Submitted Manuscript

    Google Scholar 

  18. Henn AD, Wu S, Qiu X, Ruda M, Stover M, Yang H, Liu Z, Welle SL, Holden-Wiltse J, Wu H, Zand MS (2013) High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature. Sci Rep 3:2327. https://doi.org/10.1038/srep02327

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pannuti CS, Morello RJ, Moraes JC, Curti SP, Afonso AM, Camargo MC, Souza VA (2004) Identification of primary and secondary measles vaccine failures by measurement of immunoglobulin G avidity in measles cases during the 1997 Sao Paulo epidemic. Clin Diagn Lab Immunol 11(1):119–122

    PubMed  PubMed Central  Google Scholar 

  20. Sawitri Siregar E, Darminto WJ, Bouma A (2007) The vaccination programme in Indonesia. Dev Biol 130:151–158

    CAS  Google Scholar 

  21. Leach RJ, Craigmile SC, Knott SA, Williams JL, Glass EJ (2010) Quantitative trait loci for variation in immune response to a foot-and-mouth disease virus peptide. BMC Genet 11:107. https://doi.org/10.1186/1471-2156-11-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan PL, Jacobson RM, Poland GA, Jacobsen SJ, Pankratz VS (2001) Twin studies of immunogenicity—determining the genetic contribution to vaccine failure. Vaccine 19(17–19):2434–2439

    Article  CAS  Google Scholar 

  23. Roome AJ, Walsh SJ, Cartter ML, Hadler JL (1993) Hepatitis B vaccine responsiveness in Connecticut public safety personnel. JAMA 270(24):2931–2934

    Article  CAS  Google Scholar 

  24. Wang ML, Skehel JJ, Wiley DC (1986) Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. J Virol 57(1):124–128

    Article  CAS  Google Scholar 

  25. Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, Wang E, Olnes MJ, Narayanan M, Golding H, Moir S, Dickler HB, Perl S, Cheung F, Baylor HC, Consortium CHI (2014) Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157(2):499–513. https://doi.org/10.1016/j.cell.2014.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Goot JA, Koch G, de Jong MC, van Boven M (2003) Transmission dynamics of low- and high-pathogenicity A/Chicken/Pennsylvania/83 avian influenza viruses. Avian Dis 47(3 Suppl):939–941. https://doi.org/10.1637/0005-2086-47.s3.939

    Article  PubMed  Google Scholar 

  27. van der Goot JA, Koch G, de Jong MC, van Boven M (2005) Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proc Natl Acad Sci U S A 102(50):18141–18146. https://doi.org/10.1073/pnas.0505098102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sitaras I, de Jong MC, Spackman E (2020) Selection and antigenic characterization of immune-escape mutants of H7N2 low pathogenic avian influenza virus using homologous polyclonal sera. Virus Research Submitted manuscript

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sitaras, I. (2020). Antigenic Cartography: Overview and Current Developments. In: Spackman, E. (eds) Animal Influenza Virus. Methods in Molecular Biology, vol 2123. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0346-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0346-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0345-1

  • Online ISBN: 978-1-0716-0346-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics