Skip to main content

Detection of Epigenetic Field Defects Using a Weighted Epigenetic Distance-Based Method

  • Protocol
  • First Online:
  • 1899 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

Abstract

Identifying epigenetic field defects, notably early DNA methylation alterations, is important for early cancer detection. Research has suggested these early methylation alterations are infrequent across samples and identifiable as outlier samples. Here we developed a weighted epigenetic distance-based method characterizing (dis)similarity in methylation measures at multiple CpGs in a gene or a genetic region between pairwise samples, with weights to up-weight signal CpGs and down-weight noise CpGs. Using distance-based approaches, weak signals that might be filtered out in a CpG site-level analysis could be accumulated and therefore boost the overall study power. In constructing epigenetic distances, we considered both differential methylation (DM) and differential variability (DV) signals. We demonstrated the superior performance of the proposed weighted epigenetic distance-based method over nonweighted versions and site-level EWAS (epigenome-wide association studies) methods in simulation studies. Application to breast cancer methylation data from Gene Expression Omnibus (GEO) comparing normal-adjacent tissue to tumor of breast cancer patients and normal tissue of independent age-matched cancer-free women identified novel epigenetic field defects that were missed by EWAS methods, when majority were previously reported to be associated with breast cancer and were confirmed the progression to breast cancer. We further replicated some of the identified epigenetic field defects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Katsurano M, Niwa T, Yasui Y, Shigematsu Y, Yamashita S, Takeshima H, Lee M, Kim Y, Tanaka T, Ushijima T (2012) Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T-and B-cells in DNA methylation induction. Oncogene 31(3):342

    Article  CAS  PubMed  Google Scholar 

  2. Bernstein C, Nfonsam V, Prasad AR, Bernstein H (2013) Epigenetic field defects in progression to cancer. World J Gastrointest Oncol 5(3):43

    Article  PubMed  PubMed Central  Google Scholar 

  3. Teschendorff AE, Gao Y, Jones A, Ruebner M, Beckmann MW, Wachter DL, Fasching PA, Widschwendter M (2016) DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat Commun 7:Article number: 104

    Article  CAS  Google Scholar 

  4. Teschendorff AE, Jones A, Widschwendter M (2016) Stochastic epigenetic outliers can define field defects in cancer. BMC Bioinformatics 17(1):1

    Article  CAS  Google Scholar 

  5. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10(7):687–692

    Article  CAS  PubMed  Google Scholar 

  6. Fahrner JA, Eguchi S, Herman JG, Baylin SB (2002) Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62(24):7213–7218

    CAS  PubMed  Google Scholar 

  7. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  8. Phillips T (2008) The role of methylation in gene expression. Nat Educ 1(1):116

    Google Scholar 

  9. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22(22):4632–4642

    Article  CAS  PubMed  Google Scholar 

  10. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413

    Article  CAS  PubMed  Google Scholar 

  11. Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196(1):1–7

    Article  CAS  PubMed  Google Scholar 

  12. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70(10):27–56

    Article  PubMed  Google Scholar 

  13. Koukoura O, Spandidos DA, Daponte A, Sifakis S (2014) DNA methylation profiles in ovarian cancer: implication in diagnosis and therapy. Mol Med Rep 10(1):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2:S4–S11

    Article  CAS  PubMed  Google Scholar 

  15. Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22(9):3157–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  CAS  PubMed  Google Scholar 

  17. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  PubMed  Google Scholar 

  18. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455–455

    Article  CAS  PubMed  Google Scholar 

  19. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    Article  CAS  PubMed  Google Scholar 

  20. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Teschendorff AE, Widschwendter M, Wang S (2017) Accounting for differential variability in detecting differentially methylated regions. Brief Bioinform 20(1):47–57

    Article  CAS  Google Scholar 

  22. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98(9):5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):1–25

    Article  Google Scholar 

  24. Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20(18):3705–3706

    Article  CAS  PubMed  Google Scholar 

  25. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6):80–83

    Article  Google Scholar 

  26. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43(8):768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho JW, Stefani M, dos Remedios CG, Charleston MA (2008) Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 24(13):i390–i398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phipson B, Oshlack A (2014) DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging. Genome Biol 15(9):1

    Article  CAS  Google Scholar 

  29. Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci 103(51):19430–19435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wessel J, Schork NJ (2006) Generalized genomic distance-based regression methodology for multilocus association analysis. Am J Hum Genet 79(5):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297

    Article  Google Scholar 

  32. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  33. Han F, Pan W (2010) Powerful multi-marker association tests: unifying genomic distance-based regression and logistic regression. Genet Epidemiol 34(7):680–688

    Article  PubMed  PubMed Central  Google Scholar 

  34. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer series in statistics. Springer, New York, NY

    Google Scholar 

  35. Hansen K (2015) Illumina human methylation 450kanno. ilmn12. hg19: annotation for illumina’s 450k methylation arrays. R package, version 02 1

    Google Scholar 

  36. Hair BY, Xu Z, Kirk EL, Harlid S, Sandhu R, Robinson WR, Wu MC, Olshan AF, Conway K, Taylor JA (2015) Body mass index associated with genome-wide methylation in breast tissue. Breast Cancer Res Treat 151(2):453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krijgsman O, Roepman P, Zwart W, Carroll JS, Tian S, de Snoo FA, Bender RA, Bernards R, Glas AM (2012) A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Res Treat 133(1):37–47

    Article  CAS  PubMed  Google Scholar 

  38. Tada Y, Yamaguchi Y, Kinjo T, Song X, Akagi T, Takamura H, Ohta T, Yokota T, Koide H (2015) The stem cell transcription factor ZFP57 induces IGF2 expression to promote anchorage-independent growth in cancer cells. Oncogene 34(6):752–760

    Article  CAS  PubMed  Google Scholar 

  39. Abu-Asab M, Abu-Asab N, Loffredo C, Clarke R, Amri H (2013) Identifying early events of gene expression in breast cancer with systems biology phylogenetics. Cytogenet Genome Res 139(3):206–214

    Article  CAS  PubMed  Google Scholar 

  40. Jönsson G, Staaf J, Vallon-Christersson J, Ringnér M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA (2010) Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Legendre C, Gooden GC, Johnson K, Martinez RA, Liang WS, Salhia B (2015) Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin Epigenetics 7(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bièche I, Chavey C, Andrieu C, Busson M, Vacher S, Le Corre L, Guinebretière J-M, Burlinchon S, Lidereau R, Lazennec G (2007) CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer 14(4):1039–1052

    Article  PubMed  CAS  Google Scholar 

  44. Hou J, Wu J, Dombkowski A, Zhang K, Holowatyj A, Boerner JL, Yang Z-Q (2012) Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. Am J Transl Res 4(3):247

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolf I, Bose S, Desmond JC, Lin BT, Williamson EA, Karlan BY, Koeffler HP (2007) Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105(2):139–155

    Article  CAS  PubMed  Google Scholar 

  46. Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, Pastan I, Wittig S, Pfaffendorf N, Voigt A (2006) Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 12(8):2434–2441

    Article  CAS  PubMed  Google Scholar 

  47. Cao X-C, Zhang W-R, Cao W-F, Liu B-W, Zhang F, Zhao H-M, Meng R, Zhang L, Niu R-F, Hao X-S (2013) Aquaporin3 is required for FGF-2-induced migration of human breast cancers. PLoS One 8(2):e56735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicolau M, Levine AJ, Carlsson G (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci 108(17):7265–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia T-S, Wang G-Z, Ding Q, Liu X-A, Zhou W-B, Zhang Y-F, Zha X-M, Du Q, Ni X-J, Wang J (2012) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 132(2):471–486

    Article  CAS  PubMed  Google Scholar 

  50. Yang WS, Moon H-G, Kim HS, Choi E-J, Yu M-H, Noh D-Y, Lee C (2011) Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. J Proteome Res 11(2):1078–1088

    Article  PubMed  CAS  Google Scholar 

  51. Deng Q, Huang S (2004) PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 23(28):4903

    Article  CAS  PubMed  Google Scholar 

  52. Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG (2015) Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Sem Cancer Biol 35:3–10

    Article  CAS  Google Scholar 

  53. Matise LA, Palmer TD, Ashby WJ, Nashabi A, Chytil A, Aakre M, Pickup MW, Gorska AE, Zijlstra A, Moses HL (2012) Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk. Breast Cancer Res 14(4):R98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang JT, Jiang XH, Xie C, Cheng H, Da Dong J, Wang Y, Fok KL, Zhang XH, Sun TT, Tsang LL (2013) Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim Biophys Acta 1833(12):2961–2969

    Article  CAS  PubMed  Google Scholar 

  55. Stirzaker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, Stone A, Armstong NJ, Robinson MD, Dobrovic A (2015) Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun 6:5899

    Article  CAS  PubMed  Google Scholar 

  56. Rudenko V, Kazakova S, Tanas A, Popa A, Nemirovchenko V, Kuznetsova E, Zaletaev D, Strelnikov V (2016) Identification of aberrant DNA methylation in pediatric acute myeloid leukaemia by multiplex methylation sensitive PCR. Ann Oncol 27(Suppl_6):939

    Google Scholar 

  57. Wei H, Wang H, Ji Q, Sun J, Tao L, Zhou X (2015) NRBP1 is downregulated in breast cancer and NRBP1 overexpression inhibits cancer cell proliferation through Wnt/β-catenin signaling pathway. OncoTargets Ther 8:3721

    CAS  Google Scholar 

  58. Wolf J, Müller-Decker K, Flechtenmacher C, Zhang F, Shahmoradgoli M, Mills G, Hoheisel J, Boettcher M (2014) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33(33):4273

    Article  CAS  PubMed  Google Scholar 

  59. Bi D, Ning H, Liu S, Que X, Ding K (2015) Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer. Comput Biol Chem 56:71–83

    Article  CAS  PubMed  Google Scholar 

  60. Abildgaard MO, Borre M, Mortensen MM, Ulhøi BP, Tørring N, Wild P, Kristensen H, Mansilla F, Ottosen PD, Dyrskjøt L (2012) Downregulation of zinc finger protein 132 in prostate cancer is associated with aberrant promoter hypermethylation and poor prognosis. Int J Cancer 130(4):885–895

    Article  CAS  PubMed  Google Scholar 

  61. Castaneda F, Rosin-Steiner S, Jung K (2007) Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes. Int J Med Sci 4(1):28

    Article  CAS  Google Scholar 

  62. Fidalgo F, Rodrigues TC, Pinilla M, Silva AG, do Socorro Maciel M, Rosenberg C, de Andrade VP, Carraro DM, Krepischi ACV (2015) Lymphovascular invasion and histologic grade are associated with specific genomic profiles in invasive carcinomas of the breast. Tumor Biol 36(3):1835–1848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Y., Qian, M., Ruan, P., Teschendorff, A.E., Wang, S. (2020). Detection of Epigenetic Field Defects Using a Weighted Epigenetic Distance-Based Method. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics