Skip to main content

Evaluation of 3D Chromatin Interactions Using Hi-C

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

Abstract

The invention of Hi-C has greatly facilitated 3D genome research through an unbiased probing of 3D chromatin interactions. It produces enormous amount of sequencing data that capture multiscale chromatin conformation structures. In the last decade, numerous computational methods have been developed to analyze Hi-C data and predict A/B compartments, topologically associating domains (TADs), and significant chromatin contacts. This chapter introduced the iHiC package that provides several utilities to facilitate Hi-C data analysis with public software and demonstrated its application to a Hi-C dataset generated for mouse embryonic stem (ES) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O'Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S, Network DN (2017) The 4D nucleome project. Nature 549(7671):219–226. https://doi.org/10.1038/nature23884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Denker A, de Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30(12):1357–1382. https://doi.org/10.1101/gad.281964.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PA, Nicodemi M, Pombo A (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543(7646):519–524. https://doi.org/10.1038/nature21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M (2018) Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 174(3):744–757. e724. https://doi.org/10.1016/j.cell.2018.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai B, Tang Q, Jin W, Hu G, Wangsa D, Cui K, Stanton BZ, Ren G, Ding Y, Zhao M, Liu S, Song J, Ried T, Zhao K (2018) Trac-looping measures genome structure and chromatin accessibility. Nat Methods 15(9):741–747. https://doi.org/10.1038/s41592-018-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G (2017) Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell 171(3):557–572. e524. https://doi.org/10.1016/j.cell.2017.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472. https://doi.org/10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  12. Ay F, Noble WS (2015) Analysis methods for studying the 3D architecture of the genome. Genome Biol 16:183. https://doi.org/10.1186/s13059-015-0745-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lajoie BR, Dekker J, Kaplan N (2015) The Hitchhiker's guide to Hi-C analysis: practical guidelines. Methods 72:65–75. https://doi.org/10.1016/j.ymeth.2014.10.031

    Article  CAS  PubMed  Google Scholar 

  14. Forcato M, Nicoletti C, Pal K, Livi CM, Ferrari F, Bicciato S (2017) Comparison of computational methods for Hi-C data analysis. Nat Methods 14(7):679–685. https://doi.org/10.1038/nmeth.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zufferey M, Tavernari D, Oricchio E, Ciriello G (2018) Comparison of computational methods for the identification of topologically associating domains. Genome Biol 19(1):217. https://doi.org/10.1186/s13059-018-1596-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng X, Zheng Y (2018) CscoreTool: fast Hi-C compartment analysis at high resolution. Bioinformatics 34(9):1568–1570. https://doi.org/10.1093/bioinformatics/btx802

    Article  CAS  PubMed  Google Scholar 

  17. Shin H, Shi Y, Dai C, Tjong H, Gong K, Alber F, Zhou XJ (2016) TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res 44(7):e70. https://doi.org/10.1093/nar/gkv1505

    Article  CAS  PubMed  Google Scholar 

  18. Ay F, Bailey TL, Noble WS (2014) Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 24(6):999–1011. https://doi.org/10.1101/gr.160374.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li D, Hsu S, Purushotham D, Sears RL, Wang T (2019) WashU Epigenome Browser update 2019. Nucleic Acids Res 47(W1):W158–W165. https://doi.org/10.1093/nar/gkz348

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yan J, Chen SA, Local A, Liu T, Qiu Y, Dorighi KM, Preissl S, Rivera CM, Wang C, Ye Z, Ge K, Hu M, Wysocka J, Ren B (2018) Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28(3):387. https://doi.org/10.1038/cr.2018.18

    Article  PubMed  PubMed Central  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  Google Scholar 

  23. Quinlan AR (2014) BEDTools: The Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11.12.1–11.1234. https://doi.org/10.1002/0471250953.bi1112s47

    Article  Google Scholar 

  24. Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MNK, Li Y, Hu M, Hardison R, Wang T, Yue F (2018) The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 19(1):151. https://doi.org/10.1186/s13059-018-1519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3(1):99–101. https://doi.org/10.1016/j.cels.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akdemir KC, Chin L (2015) HiCPlotter integrates genomic data with interaction matrices. Genome Biol 16:198. https://doi.org/10.1186/s13059-015-0767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N, Hwang J, Lee S, Alver BH, Pfister H, Mirny LA, Park PJ, Gehlenborg N (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19(1):125. https://doi.org/10.1186/s13059-018-1486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miura H, Poonperm R, Takahashi S, Hiratani I (2018) Practical analysis of Hi-C data: generating A/B compartment profiles. Methods Mol Biol 1861:221–245. https://doi.org/10.1007/978-1-4939-8766-5_16

    Article  CAS  PubMed  Google Scholar 

  29. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112(47):E6456–E6465. https://doi.org/10.1073/pnas.1518552112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Xiaobin Zheng from Carnegie Institution for Science and Mr. Aniello Infante in the lab for helpful comments. The work was partially supported by National Institute of General Medical Sciences Grant 5U54GM104942-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangqing Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hu, G. (2020). Evaluation of 3D Chromatin Interactions Using Hi-C. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics