Skip to main content

Derivation of Maternal Epiblast Stem Cells from Haploid Embryos

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

  • 1919 Accesses

Abstract

Pluripotent cells in the inner cell mass (ICM) or epiblast of mammalian embryos exhibit the capacity to differentiate into all cells represented in the three germ layers. Embryonic stem (ES) cells can be derived from the ICM of preimplantation stage blastocysts, while epiblast stem cells (EpiSCs) can be derived from the epiblast of postimplantation embryos or preimplantation stage embryos. The ability to derive distinct types of pluripotent cells from blastocyst-stage embryos suggests that optimization of culture conditions can promote self-renewal of various stem cell populations. Moreover, because mouse EpiSCs resemble human pluripotent stem (hPS) cells, EpiSCs are a useful model to study common and divergent mechanisms of self-renewal between orthologous species. In addition, studies have demonstrated that haploid embryos and ES cells can be derived from chemically activated oocytes. Here, we describe a protocol for deriving maternal (parthenogenetic/gynogenetic) EpiSCs (maEpiSCs) from haploid blastocyst-stage embryos. This protocol is suitable to establish an experimental model for the study of mechanisms of EpiSC self-renewal and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199. https://doi.org/10.1038/nature05972

    Article  CAS  PubMed  Google Scholar 

  2. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  3. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  Google Scholar 

  4. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195. https://doi.org/10.1038/nature05950

    Article  CAS  PubMed  Google Scholar 

  5. Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RD, Tesar PJ (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8(3):318–325. https://doi.org/10.1016/j.stem.2011.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  7. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282(5396):2072–2075

    Article  CAS  Google Scholar 

  8. Kidder BL, Palmer S (2010) Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Res 20(4):458–472. https://doi.org/10.1101/gr.101469.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cross JC, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmons DG, Yamamoto H, Kingdom JC (2003) Genes, development and evolution of the placenta. Placenta 24(2–3):123–130

    Article  CAS  Google Scholar 

  10. Kidder BL, Oseth L, Miller S, Hirsch B, Verfaillie C, Coucouvanis E (2008) Embryonic stem cells contribute to mouse chimeras in the absence of detectable cell fusion. Cloning Stem Cells 10(2):231–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Allegra Geller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Kidder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kidder, B.L. (2020). Derivation of Maternal Epiblast Stem Cells from Haploid Embryos. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics