Skip to main content

Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task

  • Protocol
  • First Online:
RNA Interference and CRISPR Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

Shortly after the development of the CRISPR/Cas9 system, it was recognized that it is prone to induce off-target mutations at significant frequencies. Therefore, there is a strong motivation to develop Cas9 enzymes with reduced off-target activity. Multiple rational design or selection approaches have been applied to develop several Cas9 versions with reduced off-target activities (high fidelity). To make these high-fidelity Cas9s available for model systems other than human cells and bacterial strains, as, for example, in zebrafish, new specialized expression vectors need to be developed. In this chapter, we focused on the HypaCas9 and HiFi Cas9 high-fidelity enzymes and incorporated the mutations of these Cas9 versions into a codon-optimized zebrafish Cas9 vector. This optimized vector was further improved by introducing an artificial polyadenine insert (A71) since polyadenylation is known to enhance mRNA translational efficiency. The Hypa-nCas9n and HiFi-nCas9n vectors were produced by single-site mutagenesis from pT3TS-nCas9n-A71 vector. We then tested the polyadenylated mRNAs for nCas9n, Hypa-nCas9n, HiFi-nCas9n, and HiFi-Cas9 protein for editing efficiency in five genome editing strategies and found that these high-fidelity Cas9 versions had different performances ranging from activity at 2–4 sites, where the wild-type nCas9n is active, indicating that these Cas9 versions have different sgRNA preferences. In summary, the developed new high-fidelity Cas9 vectors will enable researchers to perform much more accurate genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  2. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9—crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:2579–2586

    Article  Google Scholar 

  3. Cho SW, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  Google Scholar 

  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  5. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  6. Kass EM, Jasin M (2010) Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 584:3703–3708

    Article  CAS  Google Scholar 

  7. Voit RA, McMahon MA, Sawyer SL, Porteus MH (2013) Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol Ther 21:786–795

    Article  CAS  Google Scholar 

  8. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  Google Scholar 

  9. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  Google Scholar 

  10. Pattanayak V, Lin S, Guilinger JP et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  CAS  Google Scholar 

  11. Slaymaker IM, Gao L, Zetsche B et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–89

    Article  CAS  Google Scholar 

  12. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  Google Scholar 

  13. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  Google Scholar 

  14. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  Google Scholar 

  15. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  Google Scholar 

  16. Casini A, Olivieri M, Petris G et al (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36:265–271

    Article  CAS  Google Scholar 

  17. Vakulskas CA, Dever DP, Rettig GR et al (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24:1216–1224

    Article  CAS  Google Scholar 

  18. Davis EE, Frangakis S, Katsanis N (2014) Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta 1842:1960–1970

    Article  CAS  Google Scholar 

  19. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  Google Scholar 

  20. Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  Google Scholar 

  21. Fujii W, Onuma A, Sugiura K, Naito K (2014) Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system. Biochem Biophys Res Commun 445:791–794

    Article  CAS  Google Scholar 

  22. Yin L, Jao L-E, Chen W (2015) Generation of targeted mutations in zebrafish using the CRISPR/Cas system. Methods Mol Biol 1332:205–217

    Article  Google Scholar 

  23. Burger A, Lindsay H, Felker A et al (2016) Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143:2025–2037

    Article  CAS  Google Scholar 

  24. Xiao A, Zhang B (2016) Generation of targeted genomic deletions through CRISPR/Cas system in zebrafish. Methods Mol Biol 1451:65–79

    Article  CAS  Google Scholar 

  25. Prykhozhij SV, Steele SL, Razaghi B, Berman JN (2017) A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish. Dis Model Mech 10:811–822

    Article  CAS  Google Scholar 

  26. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186

    Article  Google Scholar 

  27. Prykhozhij SV, Rajan V, Berman JN (2015) A guide to computational tools and design strategies for genome editing experiments in zebrafish using CRISPR/Cas9. Zebrafish 13:70–73

    Article  Google Scholar 

  28. Cui Y, Xu J, Cheng M et al (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10:455–465

    Article  CAS  Google Scholar 

  29. Yoshimi K, Kunihiro Y, Kaneko T et al (2016) SsODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431

    Article  CAS  Google Scholar 

  30. Prykhozhij SV, Fuller C, Steele SL et al (2018) Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 46:9252

    Article  Google Scholar 

  31. Middel V, Zhou L, Takamiya M et al (2016) Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat Commun 7:12875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prykhozhij, S.V., Cordeiro-Santanach, A., Caceres, L., Berman, J.N. (2020). Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics