Skip to main content

Native Electrospray Ionization Mass Spectrometry of RNA-Ligand Complexes

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Native electrospray ionization mass spectrometry (native ESI-MS) is a powerful tool to investigate non-covalent biomolecular interactions. It has been widely used to study protein complexes, but only few examples are described for the analysis of complexes involving RNA-RNA interactions. Here, we provide a detailed protocol for native ESI-MS analysis of RNA complexes. As an example, we present the analysis of the HIV-1 genomic RNA dimerization initiation site (DIS) extended duplex dimer bound to the aminoglycoside antibiotic lividomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boeri Erba E, Petosa C (2015) The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24:1176–1192

    Article  CAS  Google Scholar 

  2. Leney AC, Heck AJ (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28:5–13

    Article  CAS  Google Scholar 

  3. Wolff P, Da Veiga C, Ennifar E, Bec G, Guichard G, Burnouf D, Dumas P (2017) Native ESI mass spectrometry can help to avoid wrong interpretations from isothermal titration Calorimetry in difficult situations. J Am Soc Mass Spectrom 28:347–357

    Article  CAS  Google Scholar 

  4. Chen L, Tanimoto A, So BR, Bakhtina M, Magliery TJ, Wysocki VH, Musier-Forsyth K (2019) Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation. Nucleic Acids Res 47:929–940

    Article  CAS  Google Scholar 

  5. McKay AR, Ruotolo BT, Ilag LL, Robinson CV (2006) Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 128:11433–11442

    Article  CAS  Google Scholar 

  6. Schneeberger EM, Breuker K (2017) Native top-down mass spectrometry of TAR RNA in complexes with a wild-type tat peptide for binding site mapping. Angew Chem Int Ed Engl 56:1254–1258

    Article  CAS  Google Scholar 

  7. van de Waterbeemd M, Fort KL, Boll D, Reinhardt-Szyba M, Routh A, Makarov A, Heck AJ (2017) High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14:283–286

    Article  Google Scholar 

  8. Collie GW, Parkinson GN, Neidle S, Rosu F, De Pauw E, Gabelica V (2010) Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J Am Chem Soc 132:9328–9334

    Article  CAS  Google Scholar 

  9. Shah S, Friedman SH (2008) An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications. Nat Protoc 3:351–356

    Article  CAS  Google Scholar 

  10. Hagan N, Fabris D (2003) Direct mass spectrometric determination of the stoichiometry and binding affinity of the complexes between nucleocapsid protein and RNA stem-loop hairpins of the HIV-1 psi-recognition element. Biochemistry 42:10736–10745

    Article  CAS  Google Scholar 

  11. Hagan NA, Fabris D (2007) Dissecting the protein-RNA and RNA-RNA interactions in the nucleocapsid-mediated dimerization and isomerization of HIV-1 stemloop 1. J Mol Biol 365:396–410

    Article  CAS  Google Scholar 

  12. Porrini M, Rosu F, Rabin C, Darre L, Gomez H, Orozco M, Gabelica V (2017) Compaction of duplex nucleic acids upon native electrospray mass spectrometry. ACS Cent Sci 3:454–461

    Article  CAS  Google Scholar 

  13. Stephenson W, Asare-Okai PN, Chen AA, Keller S, Santiago R, Tenenbaum SA, Garcia AE, Fabris D, Li PT (2013) The essential role of stacking adenines in a two-base-pair RNA kissing complex. J Am Chem Soc 135:5602–5611

    Article  CAS  Google Scholar 

  14. Turner KB, Brinson RG, Yi-Brunozzi HY, Rausch JW, Miller JT, Le Grice SF, Marino JP, Fabris D (2008) Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands. Nucleic Acids Res 36:2799–2810

    Article  CAS  Google Scholar 

  15. Turner KB, Hagan NA, Fabris D (2006) Inhibitory effects of archetypical nucleic acid ligands on the interactions of HIV-1 nucleocapsid protein with elements of psi-RNA. Nucleic Acids Res 34:1305–1316

    Article  CAS  Google Scholar 

  16. Turner KB, Kohlway AS, Hagan NA, Fabris D (2009) Noncovalent probes for the investigation of structure and dynamics of protein-nucleic acid assemblies: the case of NC-mediated dimerization of genomic RNA in HIV-1. Biopolymers 91:283–296

    Article  CAS  Google Scholar 

  17. Laughrea M, Jette L (1994) A 19-nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33:13464–13474

    Article  CAS  Google Scholar 

  18. Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R (1996) A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A 93:5572–5577

    Article  CAS  Google Scholar 

  19. Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C (1994) Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A 91:4945–4949

    Article  CAS  Google Scholar 

  20. Laughrea M, Jette L (1996) Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. Biochemistry 35:1589–1598

    Article  CAS  Google Scholar 

  21. Muriaux D, De Rocquigny H, Roques BP, Paoletti J (1996) NCp7 activates HIV-1Lai RNA dimerization by converting a transient loop-loop complex into a stable dimer. J Biol Chem 271:33686–33692

    Article  CAS  Google Scholar 

  22. Takahashi KI, Baba S, Chattopadhyay P, Koyanagi Y, Yamamoto N, Takaku H, Kawai G (2000) Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome. RNA 6:96–102

    Article  CAS  Google Scholar 

  23. Ennifar E, Dumas P (2006) Polymorphism of bulged-out residues in HIV-1 RNA DIS kissing complex and structure comparison with solution studies. J Mol Biol 356:771–782

    Article  CAS  Google Scholar 

  24. Ennifar E, Walter P, Ehresmann B, Ehresmann C, Dumas P (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat Struct Biol 8:1064–1068

    Article  CAS  Google Scholar 

  25. Ennifar E, Walter P, Dumas P (2010) Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site. Nucleic Acids Res 38:5807–5816

    Article  CAS  Google Scholar 

  26. Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, Dumas P (1999) The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 7:1439–1449

    Article  CAS  Google Scholar 

  27. Bernacchi S, Freisz S, Maechling C, Spiess B, Marquet R, Dumas P, Ennifar E (2007) Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res 35:7128–7139

    Article  CAS  Google Scholar 

  28. Ennifar E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C, Dumas P, Walter P (2003) HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal a site and binds aminoglycoside antibiotics. J Biol Chem 278:2723–2730

    Article  CAS  Google Scholar 

  29. Ennifar E, Paillart JC, Bodlenner A, Walter P, Weibel JM, Aubertin AM, Pale P, Dumas P, Marquet R (2006) Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Res 34:2328–2339

    Article  CAS  Google Scholar 

  30. Freisz S, Lang K, Micura R, Dumas P, Ennifar E (2008) Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site. Angew Chem Int Ed Engl 47:4110–4113

    Article  CAS  Google Scholar 

  31. Ennifar E, Bernacchi S, Wolff P, Dumas P (2007) Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding. RNA 13:1445–1452

    Article  CAS  Google Scholar 

  32. Gulbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R (2018) Native electrospray ionization mass spectrometry reveals multiple facets of Aptamer-ligand interactions: from mechanism to binding constants. J Am Chem Soc 140:7486–7497

    Article  CAS  Google Scholar 

  33. Liepold L, Oltrogge LM, Suci PA, Young MJ, Douglas T (2009) Correct charge state assignment of native electrospray spectra of protein complexes. J Am Soc Mass Spectrom 20:435–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dominique Burnouf for critical reading of the manuscript and useful comments and are grateful to Philippe Dumas for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wolff, P., Ennifar, E. (2020). Native Electrospray Ionization Mass Spectrometry of RNA-Ligand Complexes. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics