Skip to main content

RNA Folding and Unfolding Under Force: Single-Molecule Experiments and Their Analysis

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

  • 1394 Accesses

Abstract

We have previously described (Geffroy et al. Methods Mol Biol 1665:25–40, 2018) how to unfold (or fold) a single RNA molecule under force using a dual-beam optical trap setup. In this chapter, we complementarily describe how to analyze the corresponding data and how to interpret it in terms of RNA three-dimensional structure. As with all single-molecule methods, single RNA molecule force data often exhibit several discrete states where state-to-state transitions are blurred in a noisy signal. In order to cope with this limitation, we have implemented a novel strategy to analyze the data, which uses a hidden Markov modeling procedure. A representative example of such an analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockelmann U, Thomen P, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweerers: high sequence sensitivity and force flips. Biophys J 82:1537–1553

    Article  CAS  Google Scholar 

  2. Gross P, Laurens N, Oddershede LB, Bockelmann U, Peterman EJG, Wuite GJL (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736

    Article  CAS  Google Scholar 

  3. Geffroy L, Mangeol P, Bizebard T, Bockelmann U (2018) RNA unzipping and force measurements with a dual optical trap. Methods Mol Biol 1665:25–40

    Article  CAS  Google Scholar 

  4. Seidel R, Dekker C (2007) Single-molecule studies of nucleic acid motors. Curr Opin Struct Biol 17:80–86

    Article  CAS  Google Scholar 

  5. Bronson JE, Fei J, Hofman JM, Gonzalez RL, Wiggins CH (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205

    Article  CAS  Google Scholar 

  6. Schuster-Böckler B, Bateman A (2007) An introduction to hidden Markov models. Curr Protoc Bioinformatics 3:3A

    Google Scholar 

  7. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  CAS  Google Scholar 

  8. Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28:7016–7018

    Article  CAS  Google Scholar 

  9. Cheng W, Arunajadai SG, Moffitt JR, Tinoco I, Bustamante C (2011) Single base-pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333:1746–1749

    Article  CAS  Google Scholar 

  10. Geffroy L, Bizebard T, Aoyama R, Ueda T, Bockelmann U (2019) Force measurements show that uL4 and uL24 mechanically stabilize a fragment of 23S rRNA essential for ribosome assembly. RNA 25:472–480

    Article  CAS  Google Scholar 

  11. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  12. Bercy M, Bockelmann U (2013) Hairpins under tension: RNA versus DNA. Nucleic Acids Res 43:9928–9936

    Google Scholar 

  13. Mangeol P, Bizebard T, Chiaruttini C, Dreyfus M, Springer M, Bockelmann U (2011) Probing ribosomal protein-RNA interactions with an external force. Proc Natl Acad Sci U S A 108:18272–18276

    Article  CAS  Google Scholar 

  14. Blanco M, Walter G (2010) Analysis of complex single-molecule FRET time trajectories. Methods Enzymol 472:153–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, ESPCI, University Paris Diderot, and by a Human Frontier Science Program grant [RGP008/2014] to UB.

The authors acknowledge that Fig. 3 and a few other sentences of this chapter were first originally published in RNA [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Bizebard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geffroy, L., Bizebard, T., Bockelmann, U. (2020). RNA Folding and Unfolding Under Force: Single-Molecule Experiments and Their Analysis. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics