Skip to main content

Comparative Colocalization Single-Molecule Spectroscopy (CoSMoS) with Multiple RNA Species

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Colocalization single-molecule spectroscopy (CoSMoS) allows studying RNA-protein complexes in the full complexity of their cellular environment at single-molecule resolution. Conventionally, the interaction between a single RNA species and multiple proteins is monitored in real time. However, comparing interactions of the same proteins with different RNA species in the same cell extract promises unique insights into RNA biology. Here, we describe an approach to monitor multiple RNA species simultaneously to enable direct comparison. This approach represents a technological development to avoid conventional inter-experiment comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, Wombacher R, Ramirez N, Cornish VW, Gelles J, Moore MJ (2011) Ordered and dynamic assembly of single spliceosomes. Science 331(6022):1289–1295. https://doi.org/10.1126/science.1198830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braun JE, Friedman LJ, Gelles J, Moore MJ (2018) Synergistic assembly of human pre-spliceosomes across introns and exons. Elife 7. https://doi.org/10.7554/eLife.37751

  3. Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14(1):170–179. https://doi.org/10.1261/rna.794808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loveland AB, Habuchi S, Walter JC, van Oijen AM (2012) A general approach to break the concentration barrier in single-molecule imaging. Nat Methods 9(10):987–992. https://doi.org/10.1038/nmeth.2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yardimci H, Wang X, Loveland AB, Tappin I, Rudner DZ, Hurwitz J, van Oijen AM, Walter JC (2012) Bypass of a protein barrier by a replicative DNA helicase. Nature 492(7428):205–209. https://doi.org/10.1038/nature11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ (2013) Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site. Proc Natl Acad Sci U S A 110(17):6783–6788. https://doi.org/10.1073/pnas.1219305110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee HW, Kyung T, Yoo J, Kim T, Chung C, Ryu JY, Lee H, Park K, Lee S, Jones WD, Lim DS, Hyeon C, Heo WD, Yoon TY (2013) Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Nat Commun 4:1505. https://doi.org/10.1038/ncomms2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu Y, Wang W, Kirschner MW (2015) Specificity of the anaphase-promoting complex: a single-molecule study. Science 348(6231):1248737. https://doi.org/10.1126/science.1248737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H (2015) Single-molecule analysis of the target cleavage reaction by the drosophila RNAi enzyme complex. Mol Cell 59(1):125–132. https://doi.org/10.1016/j.molcel.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  10. Graham TG, Walter JC, Loparo JJ (2016) Two-stage synapsis of DNA ends during non-homologous end joining. Mol Cell 61(6):850–858. https://doi.org/10.1016/j.molcel.2016.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arauz E, Aggarwal V, Jain A, Ha T, Chen J (2016) Single-molecule analysis of lipid-protein interactions in crude cell lysates. Anal Chem 88(8):4269–4276. https://doi.org/10.1021/acs.analchem.5b04127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe M, Iwakawa HO, Tadakuma H, Tomari Y (2017) Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A. Nucleic Acids Res 45(18):10837–10844. https://doi.org/10.1093/nar/gkx748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoskins AA, Rodgers ML, Friedman LJ, Gelles J, Moore MJ (2016) Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. Elife 5. https://doi.org/10.7554/eLife.14166

  14. Larson JD, Hoskins AA (2017) Dynamics and consequences of spliceosome E complex formation. Elife 6. https://doi.org/10.7554/eLife.27592

  15. Anderson EG, Hoskins AA (2014) Single molecule approaches for studying spliceosome assembly and catalysis. Methods Mol Biol 1126:217–241. https://doi.org/10.1007/978-1-62703-980-2_17

    Article  CAS  PubMed  Google Scholar 

  16. Braun JE, Serebrov V (2017) Single-molecule analysis of pre-mRNA splicing with colocalization single-molecule spectroscopy (CoSMoS). Methods Mol Biol 1648:27–37. https://doi.org/10.1007/978-1-4939-7204-3_3

    Article  CAS  PubMed  Google Scholar 

  17. Larson JD, Rodgers ML, Hoskins AA (2014) Visualizing cellular machines with colocalization single molecule microscopy. Chem Soc Rev 43(4):1189–1200. https://doi.org/10.1039/c3cs60208g

    Article  CAS  PubMed  Google Scholar 

  18. Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86:27–36. https://doi.org/10.1016/j.ymeth.2015.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaur H, Jamalidinan F, Condon SGF, Senes A, Hoskins AA (2019) Analysis of spliceosome dynamics by maximum likelihood fitting of dwell time distributions. Methods 153:13–21. https://doi.org/10.1016/j.ymeth.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Larson J, Kirk M, Drier EA, O'Brien W, MacKay JF, Friedman LJ, Hoskins AA (2014) Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope. Nat Protoc 9(10):2317–2328. https://doi.org/10.1038/nprot.2014.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Joerg E. Braun acknowledges funding from the Human Frontier Science Program (HFSP) LT000166/2013 and the European Molecular Biology Organization (EMBO) ALTF 890-2012. Joerg E. Braun is supported by funding to the laboratory of Melissa J. Moore: NIH R01 GM053007.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haraszti, R.A., Braun, J.E. (2020). Comparative Colocalization Single-Molecule Spectroscopy (CoSMoS) with Multiple RNA Species. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics