Skip to main content

Analysis of the HIV-1 Genomic RNA Dimerization Initiation Site Binding to Aminoglycoside Antibiotics Using Isothermal Titration Calorimetry

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Isothermal titration calorimetry (ITC) provides a sensitive, powerful, and accurate tool to suitably analyze the thermodynamic of RNA binding events. This approach does not require any modification or labeling of the system under analysis and is performed in solution. ITC is a very convenient technique that provides an accurate determination of binding parameters, as well as a complete thermodynamic profile of the molecular interactions. Here we show how this approach can be used to characterize the interactions between the dimerization initiation site (DIS) RNA localized within the HIV-1 viral genome and aminoglycoside antibiotics. Our ITC study showed that the 4,5-disubstituted 2-desoxystreptamine (2-DOS) aminoglycosides can bind the DIS with a nanomolar affinity and a high specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    CAS  PubMed  Google Scholar 

  2. Privalov PL, Dragan AI (2007) Microcalorimetry of biological macromolecules. Biophys Chem 126:16–24

    CAS  PubMed  Google Scholar 

  3. Velazquez Campoy A, Freire E (2005) ITC in the post-genomic era…? Priceless. Biophys Chem 115:115–124

    CAS  PubMed  Google Scholar 

  4. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    CAS  PubMed  Google Scholar 

  5. Bec G, Meyer B, Gerard MA, Steger J, Fauster K, Wolff P, Burnouf D, Micura R, Dumas P, Ennifar E (2013) Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors. J Am Chem Soc 135:9743–9752

    CAS  PubMed  Google Scholar 

  6. Dumas P, Ennifar E, Da Veiga C, Bec G, Palau W, Di Primo C, Pineiro A, Sabin J, Munoz E, Rial J (2016) Extending ITC to kinetics with kinITC. Methods Enzymol 567:157–180

    CAS  PubMed  Google Scholar 

  7. Munoz E, Sabin J, Rial J, Perez D, Ennifar E, Dumas P, Pineiro A (2019) Thermodynamic and kinetic analysis of isothermal titration calorimetry experiments by using KinITC in AFFINImeter. Methods Mol Biol 1964:225–239

    CAS  PubMed  Google Scholar 

  8. Pineiro A, Munoz E, Sabin J, Costas M, Bastos M, Velazquez-Campoy A, Garrido PF, Dumas P, Ennifar E, Garcia-Rio L, Rial J, Perez D, Fraga P, Rodriguez A, Cotelo C (2019) AFFINImeter: a software to analyze molecular recognition processes from experimental data. Anal Biochem 577:117–134

    CAS  PubMed  Google Scholar 

  9. Burnouf D, Ennifar E, Guedich S, Puffer B, Hoffmann G, Bec G, Disdier F, Baltzinger M, Dumas P (2012) kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J Am Chem Soc 134:559–565

    CAS  PubMed  Google Scholar 

  10. Guedich S, Puffer-Enders B, Baltzinger M, Hoffmann G, Da Veiga C, Jossinet F, Thore S, Bec G, Ennifar E, Burnouf D, Dumas P (2016) Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches. RNA Biol 13:373–390

    PubMed  PubMed Central  Google Scholar 

  11. Zihlmann P, Silbermann M, Sharpe T, Jiang X, Muhlethaler T, Jakob RP, Rabbani S, Sager CP, Frei P, Pang L, Maier T, Ernst B (2018) KinITC-one method supports both thermodynamic and kinetic SARs as exemplified on FimH antagonists. Chemistry 24:13049–13057

    CAS  PubMed  Google Scholar 

  12. Barbieri CM, Srinivasan AR, Pilch DS (2004) Deciphering the origins of observed heat capacity changes for aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA a-sites: a calorimetric, computational, and osmotic stress study. J Am Chem Soc 126:14380–14388

    CAS  PubMed  Google Scholar 

  13. Feig AL (2007) Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers 87:293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Feig AL (2009) Studying RNA-RNA and RNA-protein interactions by isothermal titration calorimetry. Methods Enzymol 468:409–422

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaul M, Pilch DS (2002) Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides to the A site of 16S rRNA. Biochemistry 41:7695–7706

    CAS  PubMed  Google Scholar 

  16. Pilch DS, Kaul M, Barbieri CM, Kerrigan JE (2003) Thermodynamics of aminoglycoside-rRNA recognition. Biopolymers 70:58–79

    CAS  PubMed  Google Scholar 

  17. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205

    CAS  PubMed  Google Scholar 

  18. Haddrick M, Lear AL, Cann AJ, Heaphy S (1996) Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. J Mol Biol 259:58–68

    CAS  PubMed  Google Scholar 

  19. Paillart J-C, Berthoux L, Ottmann M, Darlix J-L, Marquet R, Ehresmann C, Ehresmann B (1996) A dual role of the dimerization initiation site of HIV-1 in genomic RNA packaging and proviral DNA synthesis. J Virol 70:8348–8354

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Laughrea M, Jetté L (1994) A 19-nucleotide sequence upstream of the 5′ major splice donor site is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33:13464–13474

    CAS  PubMed  Google Scholar 

  21. Muriaux D, Girard PM, Bonnet-Mathonière B, Paoletti J (1995) Dimerization of HIV-1lai RNA at low ionic strength. J Biol Chem 270:8209–8216

    CAS  PubMed  Google Scholar 

  22. Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R (1996) A loop-loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A 93:5572–5577

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C (1994) Identification of the primary site of the human immunodeficiency virus type I RNA dimerization in vitro. Proc Natl Acad Sci U S A 91:4945–4949

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Laughrea M, Jetté L (1996) Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNA can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. Biochemistry 35:1589–1598

    CAS  PubMed  Google Scholar 

  25. Muriaux D, Fossé P, Paoletti J (1996) A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry 35:5075–5082

    CAS  PubMed  Google Scholar 

  26. Rist MJ, Marino JP (2002) Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. Biochemistry 41:14762–14770

    CAS  PubMed  Google Scholar 

  27. Takahashi KI, Baba S, Chattopadhyay P, Koyanagi Y, Yamamoto N, Takaku H, Kawai G (2000) Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome. RNA 6:96–102

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi KI, Baba S, Koyanagi Y, Yamamoto N, Takaku H, Kawai G (2001) Two basic regions of NCp7 are sufficient for conformational conversion of HIV-1 dimerization initiation site from kissing-loop dimer to extended-duplex dimer. J Biol Chem 276:31274–31278

    CAS  PubMed  Google Scholar 

  29. Ennifar E, Dumas P (2006) Polymorphism of bulged-out residues in HIV-1 RNA DIS kissing complex and structure comparison with solution studies. J Mol Biol 356:771–782

    CAS  PubMed  Google Scholar 

  30. Ennifar E, Walter P, Ehresmann B, Ehresmann C, Dumas P (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat Struct Biol 8:1064–1068

    CAS  PubMed  Google Scholar 

  31. Ennifar E, Walter P, Dumas P (2010) Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site. Nucleic Acids Res 38:5807–5816

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, Dumas P (1999) The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 7:1439–1449

    CAS  PubMed  Google Scholar 

  33. Ennifar E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C, Dumas P, Walter P (2003) HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics. J Biol Chem 278:2723–2730

    CAS  PubMed  Google Scholar 

  34. Bernacchi S, Freisz S, Maechling C, Spiess B, Marquet R, Dumas P, Ennifar E (2007) Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res 35:7128

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL (2013) Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 8:2509–2517

    CAS  PubMed  Google Scholar 

  36. Ennifar E, Paillart JC, Bernacchi S, Walter P, Pale P, Decout JL, Marquet R, Dumas P (2007) A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site. Biochimie 89:1195–1203

    CAS  PubMed  Google Scholar 

  37. Ennifar E, Paillart JC, Bodlenner A, Walter P, Weibel JM, Aubertin AM, Pale P, Dumas P, Marquet R (2006) Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Res 34:2328–2339

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Freisz S, Lang K, Micura R, Dumas P, Ennifar E (2008) Binding of aminoglycoside antibiotics to the duplex form of the HIV-1 genomic RNA dimerization initiation site. Angew Chem Int Ed Engl 47:4110–4113

    CAS  PubMed  Google Scholar 

  39. Bodlenner A, Alix A, Weibel JM, Pale P, Ennifar E, Paillart JC, Walter P, Marquet R, Dumas P (2007) Synthesis of a neamine dimer targeting the dimerization initiation site of HIV-1 RNA. Org Lett 9:4415–4418

    CAS  PubMed  Google Scholar 

  40. Bernacchi S, Ennifar E, Toth K, Walter P, Langowski J, Dumas P (2005) Mechanism of hairpin-duplex conversion for the HIV-1 dimerization initiation site. J Biol Chem 280:40112–40121

    CAS  PubMed  Google Scholar 

  41. Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397

    CAS  PubMed  Google Scholar 

  42. Tellinghuisen J (2016) Analysis of multitemperature isothermal titration calorimetry data at very low c: global beats van't Hoff. Anal Biochem 513:43–46

    CAS  PubMed  Google Scholar 

  43. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    CAS  PubMed  Google Scholar 

  44. Brautigam CA, Zhao H, Vargas C, Keller S, Schuck P (2016) Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 11:882–894

    CAS  PubMed  Google Scholar 

  45. Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Da Veiga C, Mezher J, Dumas P, Ennifar E (2016) Isothermal titration calorimetry: assisted crystallization of RNA-ligand complexes. Methods Mol Biol 1320:127–143

    PubMed  Google Scholar 

  47. Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784

    CAS  PubMed  Google Scholar 

  48. Ramirez J, Recht R, Charbonnier S, Ennifar E, Atkinson RA, Trave G, Nomine Y, Kieffer B (2015) Disorder-to-order transition of MAGI-1 PDZ1 C-terminal extension upon peptide binding: thermodynamic and dynamic insights. Biochemistry 54:1327–1337

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serena Bernacchi or Eric Ennifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bernacchi, S., Ennifar, E. (2020). Analysis of the HIV-1 Genomic RNA Dimerization Initiation Site Binding to Aminoglycoside Antibiotics Using Isothermal Titration Calorimetry. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics