Skip to main content

Application of NIR Raman Spectroscopy to Probe the Flexibility of RNA Structure

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

NIR Raman spectroscopy has great potential for the detection of very weak Stokes-shifted Raman scattering emitted by biomolecules. Reports relating Raman spectroscopy analyses of ribonucleic acids (RNAs) are minimal. Nevertheless, correlation between Raman vibrational spectra and specific structural features of RNA from Avocado sunblotch viroids (ASBVds) has been clearly established. In this chapter, we discuss how to obtain NIR Raman RNA spectra and applications of Raman spectroscopy for the structural analysis of RNA, based on the analysis of ASBVd RNA. This chapter includes the analysis of spectral changes upon thermal denaturation, deuteration, and self-cleavage perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929

    Article  CAS  Google Scholar 

  2. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  Google Scholar 

  3. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  Google Scholar 

  4. Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  5. Maurel MC (1992) RNA in evolution. J Evol Biol 2:173–188

    Article  Google Scholar 

  6. Maurel MC, Decout JL (1999) Origins of life: molecular foundations and new approaches. Tetrahedron, 55, 3141–3182

    Article  CAS  Google Scholar 

  7. Pérez-Villa A, Saitta AM, Georgelin T, Lambert JF, Guyot F, Maurel MC & Pietrucci F, (2018) Synthesis of RNA nucleotides in plausible prebiotic conditions from an initio computer simulations. J Phys Chem Lett, Sep 6;9(17):4981–4987

    Google Scholar 

  8. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304

    Article  CAS  Google Scholar 

  9. Ding F, Lavender CA, Weeks KM, Dokholyan NV (2012) Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 9:603–608

    Article  CAS  Google Scholar 

  10. Sattin BD, Zhao W, Travers K, Chu S, Herschlag D (2008) Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc 130:6085–6087

    Article  CAS  Google Scholar 

  11. Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  CAS  Google Scholar 

  12. Cantara WA, Olson ED, Musier-Forsyth K (2017) Analysis of RNA structure using small-angle X-ray scattering. Methods 113:46–55

    Article  CAS  Google Scholar 

  13. Greenfeld M, Herschlag D (2009) Probing nucleic acid–ion interactions with buffer exchange-atomic emission spectroscopy. Methods Enzymol 469:375–389

    Article  CAS  Google Scholar 

  14. Qin Peter Z, Dieckmann TH (2004) Application of NMR and EPR methods to the study of RNA. Curr Opin Struct Biol 14(3):350–359

    Article  CAS  Google Scholar 

  15. Solomatin SV, Greenfeld M, Chu S, Herschlag D (2010) Multiple native states of an RNA enzyme reveal persistent ruggedness of an RNA folding landscape. Nature 463:681–684

    Article  CAS  Google Scholar 

  16. Das R, Travers K, Bai Y, Herschlag D (2005) Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc 127:8272–8273

    Article  CAS  Google Scholar 

  17. Bai Y, Das R, Millet IS, Herschlag D, Doniach S (2005) Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proc Natl Acad Sci U S A 102:1035–1040

    Article  CAS  Google Scholar 

  18. Georges J, Jr T (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct 28:1–27

    Article  Google Scholar 

  19. Peticolas WL, Evertsz E (1992) Conformation of DNA in vitro and in vivo from laser Raman scattering. Methods Enzymol 211:335–352

    Article  CAS  Google Scholar 

  20. Lafleur L, Rice J, Thomas GJ Jr (1972) Raman studies of nucleic acids. VII. Poly a. poly U and poly G-poly C. Biopolymers 11:2423–2437

    Article  CAS  Google Scholar 

  21. Prescott B, Gamache R, Livramento J, Thomas GJJR (1974) Raman studies of nucleic acids. XII. Conformations of oligonucleotides and deuterated polynucleotides. Biopolymers 13:1821–1845

    Article  CAS  Google Scholar 

  22. Guan Y, Wurrey CJ, Thomas GJ Jr (1994) Vibrational analysis of nucleic acids. I. The phosphodiester group in dimethyl phosphate model compounds: (CH3O)2PO2, (CD3O)2 PO2, and (13CH3O)2PO2. Biophys J 66:225–235

    Article  CAS  Google Scholar 

  23. Luoma Greg A, Marshall Alan G (1978) Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA. Proc Natl Acad Sci U S A 75(10):4904–1905

    Google Scholar 

  24. Wartell RM, Harrell JT (1986) Characteristics and variations of B-type DNA conformations in solution—a quantitative analysis of Raman band intensities of 8 DNAs. Biochemistry 25:2664–2671

    Article  CAS  Google Scholar 

  25. Hui-Bon-Hoa G, Kaddour H, Vergne J, Kruglik Sergei G, Maurel MC (2014) Raman characterization of Avocado Sunblotch Viroid and its response to external perturbations and self-cleavage. BMC Biophys 7:2–15

    Article  Google Scholar 

  26. Gora-Sochacka A (2004) Viroids: unusual small pathogenic RNAs. Proc Natl Acad Sci U S A 101:6792–6797

    Article  Google Scholar 

  27. Daros JA, Flores R (2004) Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc Natl Acad Sci U S A 101:6792–6797

    Article  CAS  Google Scholar 

  28. Tsuboi M, Takahashi MS, Kajiura T, Nishimura S (1971) Raman spectrum of a transfer RNA. Science 174:1142–1144

    Article  CAS  Google Scholar 

  29. Luoma Grec A, Marshall Allan G (1978) Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA. Proc Natl Acad Sci U S A 75(10):4901–4905

    Article  Google Scholar 

  30. Medeiros G, Thomas GJ (1971) Raman studies of nucleic acids. 4. Vibrational spectra and associative interactions of aqueous inosine derivatives. Biochim Biophys Acta 247:449–462

    Article  CAS  Google Scholar 

  31. Thomas GJ, Hartman KA (1973) Raman studies of nucleic acids. 8. Estimation of RNA secondary structure from Raman scattering by phosphate group vibrations. Biochim Biophys Acta 312:311–322

    Article  CAS  Google Scholar 

  32. Hartman GJ, McDonald-Ordzie PE, Kaper JM, Precott B, Thomas GJJ (1978) Studies of virus structure by laser Raman spectroscopy. 4. Turnip yellow mosaic-virus and capsids. Biochemistry 17:2118–2123

    Article  CAS  Google Scholar 

  33. Weaver JL, Williams RW (1988) Raman spectroscopy measurement of base stacking in solutions of adenosine, AMP, ATP and oligoadenylate. Biochemistry 27:8899–8903

    Article  CAS  Google Scholar 

  34. Valdemaras R (2001) Interactions of cyclic AMP and its dibutyryl analogue with model membrane: X-ray diffraction and Raman spectroscopy study using cubic liquid-crystalline phase of monoolein. Biophys Chem 90:75–87

    Article  Google Scholar 

Download references

Acknowledgments

Marie-Christine Maurel from UPMC Université, Paris 6, France, is thanked for initiating and planning this work. Jacques Verne and Hussein Kaddour are thanked for plasmid constructions and purification of the ASBVds. Hussein Kaddour who was the recipient of a fellowship from the Center National de la Recherche Scientifique (CNRS) did most of the Raman experiments. Sergei Kruglik from UPMC, Paris 6 and Sorbonne Universités, Laboratoire Jean-Perrin, 75005 Paris, is thanked for initiating the NIR Raman spectroscopy and all the data processing. This study was supported by Université Paris 6, the CNRS (grant PID EPOV), and the Centre National d’Etudes Spatiale. Richard Sinden is thanked for careful reading and helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaston, H.B.H. (2020). Application of NIR Raman Spectroscopy to Probe the Flexibility of RNA Structure. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics