Skip to main content

Application of FTIR Spectroscopy to Analyze RNA Structure

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Fourier transform infrared (FTIR) spectroscopy has been widely used for the analysis of both protein and nucleic acid secondary structure. This is one of the vibration spectroscopy methods that are extremely sensitive to any change in molecular structure. While numerous reports describe how to proceed to analyze protein and deoxyribonucleic acid (DNA) structures using FTIR, reports related to the analyses of ribonucleic acids (RNAs) are few. Nevertheless, RNAs are versatile molecules involved in a multitude of roles in the cell. In this chapter, we present applications of FTIR for the structural analysis of RNA, including the analysis of helical parameters and noncanonical base pairing, often found in RNA. The effect of temperature pretreatment, which has a great impact on RNA folding, will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflectance

FTIR:

Fourier transform infrared spectroscopy

nt:

Nucleotide

ss-/dsRNA:

Single/double-stranded RNA

References

  1. Varani G, McClain WH (2000) The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23

    Article  CAS  Google Scholar 

  2. Kimsey I, Al-Hashimi HM (2014) Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids. Curr Opin Struct Biol 24:72–80

    Article  CAS  Google Scholar 

  3. Rodnina MV (2013) The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Curr Opin Struct Biol 23:595–602

    Article  CAS  Google Scholar 

  4. Pool MR (2005) Signal recognition particles in chloroplasts, bacteria, yeast and mammals. Mol Membr Biol 22:3–15

    Article  CAS  Google Scholar 

  5. Patil VS, Zhou R, Rana TM (2013) Gene regulation by non-coding RNAs. Crit Rev Biochem Mol Biol 49:16–32

    Article  Google Scholar 

  6. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3:a003798

    Article  Google Scholar 

  7. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  8. Sun X, Li JM, Wartell RM (2007) Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA 13:2277–2286

    Article  CAS  Google Scholar 

  9. Cayrol B, Geinguenaud F, Lacoste J, Busi F, Le Derout J, Pietrement O, Le Cam E, Regnier P, Lavelle C, Arluison V (2009) Auto-assembly of E. coli DsrA small noncoding RNA: molecular characteristics and functional consequences. RNA Biol 6:434–445

    Article  CAS  Google Scholar 

  10. Bradley M (2015) Lineshapes in IR and Raman spectroscopy. Spectroscopy 30:42–46

    Google Scholar 

  11. Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104:477–488

    Article  CAS  Google Scholar 

  12. Stelling AL, Xu Y, Zhou H, Choi SH, Clay MC, Merriman DK, Al-Hashimi HM (2017) Robust IR-based detection of stable and fractionally populated G-C+ and A-T Hoogsteen base pairs in duplex DNA. FEBS Lett 591:1770–1784

    Article  CAS  Google Scholar 

  13. Rangadurai A, Zhou H, Merriman DK, Meiser N, Liu B, Shi H, Szymanski ES, Al-Hashimi HM (2018) Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA? Nucleic Acids Res 46:11099–11114

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsuboi M (1969) Application of infrared spectroscopy to structure studies of nucleic acids. In: Brame EGJ (ed) Applied spectroscopy reviews. Dekker, New York, pp 45–90

    Google Scholar 

  15. Letellier R, Ghomi M, Taillandier E (1987) Out-of-plane vibration modes of nucleic acid bases. Eur Biophys J 14:227–241

    Article  CAS  Google Scholar 

  16. Liquier J, Taillandier E (1996) Infrared spectroscopy of nucleic acids. In: Mantsch HH, Chapman D (Eds) Infrared spectroscopy of biomolecules. Wiley-Liss, Inc, New York, pp. 131–158

    Google Scholar 

  17. Taillandier E, Liquier J (2002) Vibrational Spectroscopy of Nucleic Acids, In: Chalmers JM, Griffith PR (Eds) Handbook of Vibrational Spectroscopy. Wiley & sons, Chichester, vol. 5, Chapter 2

    Google Scholar 

  18. Clay MC, Ganser LR, Merriman DK, Al-Hashimi HM (2017) Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res 45:e134

    Article  CAS  Google Scholar 

  19. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  Google Scholar 

  20. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 107:175–187

    Article  CAS  Google Scholar 

  21. Malabirade A, Partouche D, El Hamoui O, Turbant F, Geinguenaud F, Recouvreux P, Bizien T, Busi F, Wien F, Arluison V (2018) Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 8:16792

    Article  Google Scholar 

  22. Tsuboi M, Higuchi S, Kyogoku Y, Nishimura S (1969) Infrared spectra of transfer RNA's. II. Formylmethionine transfer RNA from Escherichia coli in aqueous solution. Biochim Biophys Acta 19:23–28

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, CEA, University Paris Diderot, University Paris 13, and University of Palermo. We are grateful to RR Sinden (South Dakota School of Mines and Technology, USA) for critical reading of the manuscript and many fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Geinguenaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geinguenaud, F., Militello, V., Arluison, V. (2020). Application of FTIR Spectroscopy to Analyze RNA Structure. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics