Skip to main content

Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.

Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 23(1):36–47. https://doi.org/10.1016/j.sbi.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  2. Ha T, Enderle T, Ogletree DF et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268. https://doi.org/10.1073/pnas.93.13.6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chung HS, McHale K, Louis JM et al (2012) Single-molecule fluorescence experiments determine protein folding transition path times. Science 335(6071):981–984. https://doi.org/10.1126/science.1215768

    Article  CAS  PubMed  Google Scholar 

  4. Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18(1):16–26. https://doi.org/10.1016/j.sbi.2007.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deniz AA, Dahan M, Grunwell JR et al (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proc Natl Acad Sci U S A 96(7):3670–3675. https://doi.org/10.1073/pnas.96.7.3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lamichhane R, Solem A, Black W et al (2010) Single-molecule FRET of protein-nucleic acid and protein-protein complexes: surface passivation and immobilization. Methods 52(2):192–200. https://doi.org/10.1016/j.ymeth.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cardo L, Karunatilaka KS, Rueda D et al (2012) Single molecule FRET characterization of large ribozyme folding. Methods Mol Biol 848:227–251. https://doi.org/10.1007/978-1-61779-545-9_15

    Article  CAS  PubMed  Google Scholar 

  8. Gust A, Zander A, Gietl A et al (2014) A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 19(10):15824–15865. https://doi.org/10.3390/molecules191015824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holden SJ, Uphoff S, Hohlbein J et al (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99(9):3102–3111. https://doi.org/10.1016/j.bpj.2010.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadzic MCAS, Börner R, König SLB et al (2018) Reliable state identification and state transition detection in fluorescence intensity-based single-molecule FRET data. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.7b12483

    Article  CAS  Google Scholar 

  11. Steiner M, Karunatilaka KS, Sigel RKO et al (2008) Single-molecule studies of group II intron ribozymes. Proc Natl Acad Sci U S A 105(37):13853–13858. https://doi.org/10.1073/pnas.0804034105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schmitz AG, Zelger-Paulus S, Gasser G et al (2015) Strategy for internal labeling of large RNAs with minimal perturbation by using fluorescent PNA. Chembiochem 16(9):1302–1306. https://doi.org/10.1002/cbic.201500180

    Article  CAS  PubMed  Google Scholar 

  13. Kowerko D, König SLB, Skilandat M et al (2015) Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns. Proc Natl Acad Sci U S A 112(11):3403–3408. https://doi.org/10.1073/pnas.1322759112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saha R, Verbanic S, Chen IA (2018) Lipid vesicles chaperone an encapsulated RNA aptamer. Nat Commun 9(1):2313. https://doi.org/10.1038/s41467-018-04783-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Börner R, Kowerko D, Krause S et al (2012) Efficient simultaneous fluorescence orientation, spectrum, and lifetime detection for single molecule dynamics. J Chem Phys 137(16):164202. https://doi.org/10.1063/1.4759108

    Article  CAS  PubMed  Google Scholar 

  16. Schuler B, Lipman EA, Steinbach PJ et al (2005) Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence. Proc Natl Acad Sci U S A 102(8):2754–2759. https://doi.org/10.1073/pnas.0408164102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cisse I, Okumus B, Joo C et al (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci U S A 104(31):12646–12650. https://doi.org/10.1073/pnas.0610673104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boukobza E, Sonnenfeld A, Haran G (2001) Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B 105(48):12165–12170. https://doi.org/10.1021/jp012016x

    Article  CAS  Google Scholar 

  19. Liu B, Mazouchi A, Gradinaru CC (2010) Trapping single molecules in liposomes: surface interactions and freeze-thaw effects. J Phys Chem B 114(46):15191–15198. https://doi.org/10.1021/jp104614d

    Article  CAS  PubMed  Google Scholar 

  20. Okumus B, Wilson TJ, Lilley DMJ et al (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87(4):2798–2806. https://doi.org/10.1529/biophysj.104.045971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishitsuka Y, Okumus B, Arslan S et al (2010) Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal Chem 82(23):9694–9701. https://doi.org/10.1021/ac101714u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blicher A, Wodzinska K, Fidorra M et al (2009) The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys J 96(11):4581–4591. https://doi.org/10.1016/j.bpj.2009.01.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paudel BP, Fiorini E, Börner R et al (2018) Optimal molecular crowding accelerates group II intron folding and maximizes catalysis. Proc Natl Acad Sci U S A 30:201806685. https://doi.org/10.1073/pnas.1806685115

    Article  CAS  Google Scholar 

  24. Fiorini E, Börner R, Sigel RKO (2015) Mimicking the in vivo environment – the effect of crowding on RNA and biomacromolecular folding and activity. Chimia 69(4):207–212. https://doi.org/10.2533/chimia.2015.207

    Article  CAS  PubMed  Google Scholar 

  25. Zhao R, Rueda D (2009) RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49(2):112–117. https://doi.org/10.1016/j.ymeth.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  26. Cooper D, Uhm H, Tauzin LJ et al (2013) Photobleaching lifetimes of cyanine fluorophores used for single-molecule Förster resonance energy transfer in the presence of various photoprotection systems. Chembiochem 14(9):1075–1080. https://doi.org/10.1002/cbic.201300030

    Article  CAS  PubMed  Google Scholar 

  27. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86. https://doi.org/10.1006/meth.2001.1217

    Article  CAS  PubMed  Google Scholar 

  28. Pyle AM, Green JB (1994) Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 33(9):2716–2725. https://doi.org/10.1021/bi00175a047

    Article  CAS  PubMed  Google Scholar 

  29. Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11(3):287–292. https://doi.org/10.1016/S0959-440X(00)00204-9

    Article  CAS  PubMed  Google Scholar 

  30. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of Trolox as anti-blinking and antibleaching reagent. J Am Chem Soc 131(14):5018–5019. https://doi.org/10.1021/ja809117z

    Article  CAS  PubMed  Google Scholar 

  31. Gallo S, Furler M, Sigel RKO (2005) In vitro transcription and purification of RNAs of different size. Chimia 59(11):812–816. https://doi.org/10.2533/000942905777675589

    Article  CAS  Google Scholar 

  32. Zhao M, Steffen FD, Börner R et al (2017) Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1100

    Article  Google Scholar 

  33. Steffen FD, Sigel RKO, Börner R (2016) An atomistic view on carbocyanine photophysics in the realm of RNA. Phys Chem Chem Phys 18(42):29045–29055. https://doi.org/10.1039/c6cp04277e

    Article  CAS  PubMed  Google Scholar 

  34. Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9(2):e87649. https://doi.org/10.1371/journal.pone.0087649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Selvin PR, Ha T (eds) (2008) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  36. Chandradoss SD, Haagsma AC, Lee YK et al (2014) Surface passivation for single-molecule protein studies. J Vis Exp (86). https://doi.org/10.3791/50549

  37. König SLB, Hadzic MCAS, Fiorini E et al (2013) BOBA FRET: bootstrap-based analysis of single-molecule FRET data. PLoS One 8(12):e84157. https://doi.org/10.1371/journal.pone.0084157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Börner R, Kowerko D, Miserachs HG et al (2016) Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2016.06.002

    Article  Google Scholar 

  39. Börner R, Kowerko D, Hadzic MCAS et al (2018) Simulations of camera-based single-molecule fluorescence experiments. PLoS One 13(4):e0195277. https://doi.org/10.1371/journal.pone.0195277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Preus S, Noer SL, Hildebrandt LL et al (2015) iSMS: single-molecule FRET microscopy software. Nat Methods 12(7):593–594. https://doi.org/10.1038/nmeth.3435

    Article  CAS  PubMed  Google Scholar 

  41. Preus S, Hildebrandt LL, Birkedal V (2016) Optimal background estimators in single-molecule FRET microscopy. Biophys J 111(6):1278–1286. https://doi.org/10.1016/j.bpj.2016.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hellenkamp B, Schmid S, Doroshenko O et al (2018) Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 15(9):669–676. http://arxiv.org/pdf/1710.03807

    Article  CAS  Google Scholar 

  43. Hohlbein J, Craggs TD, Cordes T (2014) Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 43(4):1156–1171. https://doi.org/10.1039/c3cs60233h

    Article  CAS  PubMed  Google Scholar 

  44. Lee NK, Kapanidis AN, Wang Y et al (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88(4):2939–2953. https://doi.org/10.1529/biophysj.104.054114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCann JJ, Choi UB, Zheng L et al (2010) Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys J 99(3):961–970. https://doi.org/10.1016/j.bpj.2010.04.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kapanidis AN, Laurence TA, Lee NK et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38(7):523–533. https://doi.org/10.1021/ar0401348

    Article  CAS  PubMed  Google Scholar 

  47. Martens KJA, van Beljouw S, van der Els S et al. (2018) An open microscopy framework suited for tracking dCas9 in live bacteria. https://hohlbeinlab.github.io/miCube. Accessed 22 Jan 2019

  48. Craggs TD, Ambrose B, Cully J et al. smfBox: Open Source Single-Molecule FRET. https://benjaminambrose.github.io/smfBox/. Accessed 22 Jan 2019

  49. Benítez JJ, Keller AM, Chen P (2010) Nanovesicle trapping for studying weak protein interactions by single-molecule FRET. Methods Enzymol 472:41–60. https://doi.org/10.1016/S0076-6879(10)72016-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the Swiss National Science Foundation [to RKOS], the UZH Forschungskredit [FK-13-095, FK-15-09 to SZP, FK-13-091 to MCASH, FK-14-096, FK-15-095 to RB], the UZH Stiftung für wissenschaftliche Forschung [to RKOS and RB], and the University of Zurich is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland K. O. Sigel or Richard Börner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zelger-Paulus, S., Hadzic, M.C.A.S., Sigel, R.K.O., Börner, R. (2020). Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics