Skip to main content

Optogenetics: Rho GTPases Activated by Light in Living Macrophages

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2108))

Abstract

Genetically encoded optogenetic tools are increasingly popular and useful for perturbing signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic procedures employed to implement optogenetics of Rho GTPases in a macrophage cell line. Methods described here are generally applicable to other genetically encoded optogenetic tools utilizing the blue-green spectrum of light for activation, designed for specific proteins and enzymatic targets important for immune cell functions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang H, Hahn KM (2016) LOVTRAP: a versatile method to control protein function with light. Curr Protoc Cell Biol 73:21.10.1–21.10.14. https://doi.org/10.1002/cpcb.12

    Article  Google Scholar 

  2. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550. https://doi.org/10.1146/annurev-biochem-060614-034411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu YI, Wang X, He L, Montell D, Hahn KM (2011) Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol 497:393–407. https://doi.org/10.1016/B978-0-12-385075-1.00016-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108

    Article  CAS  Google Scholar 

  5. Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ (2012) LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol Plant 5(3):533–544. https://doi.org/10.1093/mp/sss020

    Article  CAS  PubMed  Google Scholar 

  6. Losi A, Gartner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72. https://doi.org/10.1146/annurev-arplant-042811-105538

    Article  CAS  PubMed  Google Scholar 

  7. Pudasaini A, El-Arab KK, Zoltowski BD (2015) LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2:18. https://doi.org/10.3389/fmolb.2015.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33(2):92–100. https://doi.org/10.1016/j.tibtech.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV (2017) Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev 117(9):6423–6446. https://doi.org/10.1021/acs.chemrev.6b00700

    Article  CAS  PubMed  Google Scholar 

  10. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J (2011) A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21(8):635–644. pii: S0960-9822(11)00311-3

    Article  CAS  Google Scholar 

  11. Bravo-Cordero JJ, Moshfegh Y, Condeelis J, Hodgson L (2013) Live cell imaging of RhoGTPase biosensors in tumor cells. Methods Mol Biol 1046:359–370. https://doi.org/10.1007/978-1-62703-538-5_22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16(6):574–586. https://doi.org/10.1038/ncb2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE, Hodgson L (2017) Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol 216(12):4331–4349. https://doi.org/10.1083/jcb.201704048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9(5):e96469. https://doi.org/10.1371/journal.pone.0096469

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miskolci V, Wu B, Moshfegh Y, Cox D, Hodgson L (2016) Optical tools to study the isoform-specific roles of small GTPases in immune cells. J Immunol 196(8):3479–3493. https://doi.org/10.4049/jimmunol.1501655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D (2017) The role of rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci Rep 7(1):8547. https://doi.org/10.1038/s41598-017-08950-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I, Yumerefendi H, Kuhlman B, Liu R, Danuser G, Hahn KM (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13(9):755–758. https://doi.org/10.1038/nmeth.3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dagliyan O, Tarnawski M, Chu PH, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM (2016) Engineering extrinsic disorder to control protein activity in living cells. Science 354(6318):1441–1444. https://doi.org/10.1126/science.aah3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186(9):1487–1494

    Article  CAS  Google Scholar 

  20. Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609. https://doi.org/10.1016/B978-0-12-407761-4.00025-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234. https://doi.org/10.1007/978-1-61779-442-1_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miskolci V, Hodgson L, Cox D (2017) Using fluorescence resonance energy transfer-based biosensors to probe Rho GTPase activation during phagocytosis. Methods Mol Biol 1519:125–143. https://doi.org/10.1007/978-1-4939-6581-6_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L (2018) Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat Chem Biol 14:591. https://doi.org/10.1038/s41589-018-0044-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant T32GM007491 to V.M., R01GM129098 and R01GM132098 to L.H. National Cancer Institute P30CA013330 for Analytical Imaging Facility support. Irma T. Hirschl Career Scientist Award to L.H. pTriEX-mVenus-PA-Cdc42 (Addgene #75263), pTriEX-mVenus-PA-Rac1 (Addgene #22007), pTriEX-PA-Rac1 C450R (Addgene #22025), pTriEX-NTOM20-LOV2 WT (Addgene #81009) and pTriEx-mVenus-Zdk1-VAV2 DH/PH/C1 (Addgene #81133) were gifts from Dr. Klaus Hahn (UNC-Chapel Hill).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianne Cox or Louis Hodgson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hülsemann, M., Verkhusha, P.V., Guo, P., Miskolci, V., Cox, D., Hodgson, L. (2020). Optogenetics: Rho GTPases Activated by Light in Living Macrophages. In: Vancurova, I., Zhu, Y. (eds) Immune Mediators in Cancer. Methods in Molecular Biology, vol 2108. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0247-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0247-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0246-1

  • Online ISBN: 978-1-0716-0247-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics