Skip to main content

PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

DNA-encoded library technologies have emerged as a powerful platform to rapidly screen for binders to a protein of interest. These technologies are underpinned by the ability to encode a rich diversity of small molecules. While large libraries are accessible by cycles of mix and split synthesis, libraries based on single chemistries tend to be redundant. Furthermore, the quality of libraries generally decreases with the number of synthetic transformations performed in its synthesis. An alternative approach is to use hybridization to program the combinatorial assembly of fragment pairs onto a library of DNA templates. A broad molecular diversity is more easily sampled since it arises from the pairing of diverse fragments. Upon identification of productive fragment pairs, a focused library covalently linking the fragments is prepared. This focused library includes linker of different length and geometry and offers the opportunity to enrich the selected fragment set with close neighbors. Herein we describe detailed protocols to covalently link diverse fragments and screen fragment-based libraries using commercially available microarray platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619. https://doi.org/10.1038/nrd.2016.109

    Article  CAS  PubMed  Google Scholar 

  2. Neri D, Lerner RA (2018) DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu Rev Biochem 87(87):479–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi BB, Zhou Y, Huang YR, Zhang JF, Li XY (2017) Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett 27:361–369

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  5. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630

    Article  CAS  Google Scholar 

  7. Zambaldo C, Barluenga S, Winssinger N (2015) PNA-encoded chemical libraries. Curr Opin Chem Biol 26:8–15

    Article  CAS  PubMed  Google Scholar 

  8. Barluenga S, Winssinger N (2015) PNA as a biosupramolecular tag for programmable assemblies and reactions. Acc Chem Res 48:1319–1331

    Article  CAS  PubMed  Google Scholar 

  9. Daguer JP, Ciobanu M, Alvarez S, Barluenga S, Winssinger N (2011) DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem Sci 2:625–632. https://doi.org/10.1039/c0sc00574f

    Article  CAS  Google Scholar 

  10. Pouchain D, Diaz-Mochon JJ, Bialy L, Bradley M (2007) A 10,000 member PNA-encoded peptide library for profiling tyrosine kinases. ACS Chem Biol 2:810–818. https://doi.org/10.1021/cb700199k

    Article  CAS  PubMed  Google Scholar 

  11. Debaene F, Mejias L, Harris JL, Winssinger N (2004) Synthesis of a PNA-encoded cysteine protease inhibitor library. Tetrahedron 60:8677–8690. https://doi.org/10.1016/j.tet.2004.05.107

    Article  CAS  Google Scholar 

  12. Debaene F, Da Silva J, Pianowski Z, Duran F, Winssinger N (2007) Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases. Tetrahedron 63:6577–6586

    Article  CAS  Google Scholar 

  13. Daguer JP, Zambaldo C, Abegg D, Barluenga S, Tallant C, Muller S, Adibekian A, Winssinger N (2015) Identification of covalent bromodomain binders through DNA display of small molecules. Angew Chem Int Ed Engl 54:6057–6061. https://doi.org/10.1002/anie.201412276

    Article  CAS  PubMed  Google Scholar 

  14. Zambaldo C, Daguer JP, Saarbach J, Barluenga S, Winssinger N (2016) Screening for covalent inhibitors using DNA-display of small molecule libraries functionalized with cysteine reactive moieties. Med Chem Commun 7:1340–1351. https://doi.org/10.1039/c6md00242k

    Article  CAS  Google Scholar 

  15. Ciobanu M, Huang KT, Daguer JP, Barluenga S, Chaloin O, Schaeffer E, Mueller CG, Mitchell DA, Winssinger N (2011) Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem Commun 47:9321–9323. https://doi.org/10.1039/c1cc13213j

    Article  CAS  Google Scholar 

  16. Huang K-T, Gorska K, Alvarez S, Barluenga S, Winssinger N (2011) Combinatorial self-assembly of glycan fragments into microarrays. Chembiochem 12:56–60. https://doi.org/10.1002/cbic.201000567

    Article  CAS  PubMed  Google Scholar 

  17. Novoa A, Eierhoff T, Topin J, Varrot A, Barluenga S, Imberty A, Romer W, Winssinger N (2014) A LecA ligand identified from a galactoside-conjugate array inhibits host cell invasion by Pseudomonas aeruginosa. Angew Chem Int Ed Engl 53:8885–8889. https://doi.org/10.1002/anie.201402831

    Article  CAS  PubMed  Google Scholar 

  18. Novoa A, Machida T, Barluenga S, Imberty A, Winssinger N (2014) PNA-encoded synthesis (PES) of a 10000-member hetero-glycoconjugate library and microarray analysis of diverse lectins. Chembiochem 15:2058–2065. https://doi.org/10.1002/cbic.201402280

    Article  CAS  PubMed  Google Scholar 

  19. Daguer JP, Zambaldo C, Ciobanu M, Morieux P, Barluenga S, Winssinger N (2015) DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem Sci 6:739–744. https://doi.org/10.1039/c4sc01654h

    Article  CAS  PubMed  Google Scholar 

  20. Barluenga S, Zambaldo C, Ioannidou HA, Ciobanu M, Morieux P, Daguer JP, Winssinger N (2016) Novel PTP1B inhibitors identified by DNA display of fragment pairs. Bioorg Med Chem Lett 26:1080–1085. https://doi.org/10.1016/j.bmcl.2015.11.102

    Article  CAS  PubMed  Google Scholar 

  21. Levitzki A (2003) Protein kinase inhibitors as a therapeutic modality. Acc Chem Res 36:462–469. https://doi.org/10.1021/ar0201207

    Article  CAS  PubMed  Google Scholar 

  22. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17:353–376. https://doi.org/10.1038/nrd.2018.21

    Article  CAS  PubMed  Google Scholar 

  23. Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG (2014) Protein kinase C and cancer: what we know and what we do not. Oncogene 33:5225–5237. https://doi.org/10.1038/onc.2013.524

    Article  CAS  PubMed  Google Scholar 

  24. Chouikhi D, Ciobanu M, Zambaldo C, Duplan V, Barluenga S, Winssinger N (2012) Expanding the scope of PNA-encoded synthesis (PES): Mtt-protected PNA fully orthogonal to Fmoc chemistry and a broad array of robust diversity-generating reactions. Chem Eur J 18:12698–12704. https://doi.org/10.1002/chem.201201337

    Article  CAS  PubMed  Google Scholar 

  25. Winssinger N, Damoiseaux R, Tully DC, Geierstanger BH, Burdick K, Harris JL (2004) PNA-encoded protease substrate microarrays. Chem Biol 11:1351–1360. https://doi.org/10.1016/j.chembiol.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  26. Harris JL, Winssinger N (2005) PNA encoding (PNA = peptide nucleic acid): from solution-based libraries to organized microarrays. Chem Eur J 11:6792–6801. https://doi.org/10.1002/chem.200500305

    Article  CAS  PubMed  Google Scholar 

  27. Urbina HD, Debaene F, Jost B, Bole-Feysot C, Mason DE, Kuzmic P, Harris JL, Winssinger N (2006) Self-assembled small-molecule microarrays for protease screening and profiling. Chembiochem 7:1790–1797. https://doi.org/10.1002/cbic.200600242

    Article  CAS  PubMed  Google Scholar 

  28. Gorska K, Huang KT, Chaloin O, Winssinger N (2009) DNA-templated homo- and heterodimerization of peptide nucleic acid encoded oligosaccharides that mimick the carbohydrate epitope of HIV. Angew Chem Int Ed Engl 48:7695–7700. https://doi.org/10.1002/anie.200903328

    Article  CAS  PubMed  Google Scholar 

  29. Saarbach J, Masi D, Zambaldo C, Winssinger N (2017) Facile access to modified and functionalized PNAs through Ugi-based solid phase oligomerization. Bioorg Med Chem 25:5171–5177

    Article  CAS  PubMed  Google Scholar 

  30. Svensen N, Diaz-Mochon JJ, Bradley M (2011) Decoding a PNA encoded peptide library by PCR: the discovery of new cell surface receptor ligands. Chem Biol 18:1284–1289. https://doi.org/10.1016/j.chembiol.2011.07.017

    Article  CAS  PubMed  Google Scholar 

  31. Li G, Zheng WL, Liu Y, Li XY (2015) Novel encoding methods for DNA-templated chemical libraries. Curr Opin Chem Biol 26:25–33

    Article  CAS  PubMed  Google Scholar 

  32. Melkko S, Scheuermann J, Dumelin CE, Neri D (2004) Encoded self-assembling chemical libraries. Nat Biotechnol 22:568–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding agencies which have supported this work (Swiss National Science Foundation, NCCR Chemical Biology) and the collaborators that have contributed to the development of PNA-encoded technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Winssinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saarbach, J., Barluenga, S., Winssinger, N. (2020). PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics