Skip to main content

Metabolomics Data Processing Using OpenMS

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

This chapter describes the open-source tool suite OpenMS. OpenMS contains more than 180 tools which can be combined to build complex and flexible data-processing workflows. The broad range of functionality and the interoperability of these tools enable complex, complete, and reproducible data analysis workflows in computational proteomics and metabolomics. We introduce the key concepts of OpenMS and illustrate its capabilities with a complete workflow for the analysis of untargeted metabolomics data, including metabolite quantification and identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-c, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert K, Kohlbacher O (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748

    Article  Google Scholar 

  2. Pfeuffer J, Sachsenberg T, Alka O, Walzer M, Fillbrunn A, Nilse L, Schilling O, Reinert K, Kohlbacher O (2017) OpenMS - a platform for reproducible analysis of mass spectrometry data. J Biotechnol 261(February):142–148

    Article  CAS  Google Scholar 

  3. Röst HL, Schmitt U, Aebersold R, Malmström L (2014) pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library. Proteomics 14(1):74–77

    Article  Google Scholar 

  4. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: the Konstanz Information Miner. In: Studies in classification, data analysis, and knowledge organization (GfKL 2007). Springer, Berlin

    Google Scholar 

  5. Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum GA, Berthold MR (2017) KNIME for reproducible cross-domain analysis of life science data. J Biotechnol 261(February):149–156

    Article  CAS  Google Scholar 

  6. Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, Römpp A, Neumann S, Pizarro AD et al (2011) mzML—a community standard for mass spectrometry data. Mol Cell Proteomics 10(1):R110.000133

    Google Scholar 

  7. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536

    Article  CAS  Google Scholar 

  8. Sturm M, Kohlbacher O (2009) TOPPView: an open-source viewer for mass spectrometry data. J Proteome Res 8(7):3760–3763

    Article  CAS  Google Scholar 

  9. Kenar E, Franken H, Forcisi S, Wörmann K, Häring H-U, Lehmann R, Schmitt-Kopplin P, Zell A, Kohlbacher O (2014) Automated label-free quantification of metabolites from liquid chromatography–mass spectrometry data. Mol Cell Proteomics 13:348–359

    Article  CAS  Google Scholar 

  10. Bielow C, Ruzek S, Huber CG, Reinert K (2010) Optimal decharging and clustering of charge ladders generated in ESI-MS. J Proteome Res 9(5):2688–2695

    Article  CAS  Google Scholar 

  11. Lange E, Gropl C, Schulz-Trieglaff O, Leinenbach A, Huber C, Reinert K (2007) A geometric approach for the alignment of liquid chromatography mass spectrometry data. Bioinformatics 23(13):i273–i281

    Article  CAS  Google Scholar 

  12. Weisser H, Nahnsen S, Grossmann J, Nilse L, Quandt A, Brauer H, Sturm M, Kenar E, Kohlbacher O, Aebersold R, Malmström L (2013) An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res 12:1628–1644

    Article  CAS  Google Scholar 

  13. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617

    Article  Google Scholar 

  14. Fenyö D, Beavis RC (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75(4):768–774

    Article  Google Scholar 

  15. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714

    Article  CAS  Google Scholar 

  16. Böcker S, Letzel MC, Lipták Z, Pervukhin A (2009) SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25(2):218–224

    Article  Google Scholar 

  17. Böcker S, Dührkop K (2016) Fragmentation trees reloaded. J Cheminform 8(1):1–26

    Article  Google Scholar 

  18. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580–12585

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kohlbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rurik, M., Alka, O., Aicheler, F., Kohlbacher, O. (2020). Metabolomics Data Processing Using OpenMS. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics