Skip to main content

Annotation of Specialized Metabolites from High-Throughput and High-Resolution Mass Spectrometry Metabolomics

  • Protocol
  • First Online:
Book cover Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

High-throughput mass spectrometry (MS) metabolomics profiling of highly complex samples allows the comprehensive detection of hundreds to thousands of metabolites under a given condition and point in time and produces information-rich data sets on known and unknown metabolites. One of the main challenges is the identification and annotation of metabolites from these complex data sets since the number of authentic standards available for specialized metabolites is far lower than an account for the number of mass spectral features. Previously, we reported two novel tools, MetNet and MetCirc, for putative annotation and structural prediction on unknown metabolites using known metabolites as baits. MetNet employs differences between m/z values of MS1 features, which correspond to metabolic transformations, and statistical associations, while MetCirc uses MS/MS features as input and calculates similarity scores of aligned spectra between features to guide the annotation of metabolites. Here, we showcase the use of MetNet and MetCirc to putatively annotate metabolites and provide detailed instructions as to how those can be used. While our case studies are from plants, the tools find equal utility in studies on bacterial, fungal, or mammalian xenobiotic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  2. Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787

    Article  CAS  PubMed  Google Scholar 

  3. Fernie AR, Trethewey RN, Krotzky AJ et al (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  CAS  PubMed  Google Scholar 

  4. Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    Article  CAS  PubMed  Google Scholar 

  5. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

  6. Wink M (2004) Phytochemical diversity of secondary metabolites. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 915–919

    Chapter  Google Scholar 

  7. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2:251–286

    Article  CAS  PubMed Central  Google Scholar 

  8. Tohge T, Alseekh S, Fernie AR (2014) On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot 65:4599–4611

    Article  CAS  PubMed  Google Scholar 

  9. Van Der Hooft JJJ, Wandy J, Young F et al (2017) Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal Chem 89:7569–7577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Perez De Souza L, Naake T, Tohge T et al (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience 6:1–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kopka J, Schauer N, Krueger S et al (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  12. D’auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316

    Article  PubMed  CAS  Google Scholar 

  13. Li X, Svedin E, Mo HP et al (2014) Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics 198:1267

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sweetlove LJ, Fernie AR (2013) The spatial organization of metabolism within the plant cell. Annu Rev Plant Biol 64:723–746

    Article  CAS  PubMed  Google Scholar 

  15. Kuhl C, Tautenhahn R, Bottcher C et al (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283–289

    Article  CAS  PubMed  Google Scholar 

  16. Alonso A, Julia A, Beltran A et al (2011) AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics 27:1339–1340

    Article  CAS  PubMed  Google Scholar 

  17. Uppal K, Walker DI, Jones DP (2017) xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem 89:1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu F, Fine DD, Wherritt DJ et al (2016) PlantMAT: a metabolomics tool for predicting the specialized metabolic potential of a system and for large-scale metabolite identifications. Anal Chem 88:11373–11383

    Article  CAS  PubMed  Google Scholar 

  19. Li SZ, Park Y, Duraisingham S et al (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9:e1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Der Hooft JJ, Wandy J, Barrett MP et al (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci U S A 113:13738–13743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Treutler H, Tsugawa H, Porzel A et al (2016) Discovering regulated metabolite families in untargeted metabolomics studies. Anal Chem 88:8082–8090

    Article  CAS  PubMed  Google Scholar 

  22. Naake T, Fernie AR (2019) MetNet: metabolite network prediction from high-resolution mass spectrometry data in R aiding metabolite annotation. Anal Chem 91:1768–1772

    Article  CAS  PubMed  Google Scholar 

  23. Naake T, Gaquerel E (2017) MetCirc: navigating mass spectral similarity in high-resolution MS/MS metabolomics data. Bioinformatics 33:2419–2420

    Article  PubMed  CAS  Google Scholar 

  24. Breitling R, Ritchie S, Goodenowe D et al (2006) Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics 2:155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steuer R (2006) Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform 7:151–158

    Article  CAS  PubMed  Google Scholar 

  26. Morreel K, Saeys Y, Dima O et al (2014) Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. Plant Cell 26:929–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaquerel E, Kuhl C, Neumann S (2013) Computational annotation of plant metabolomics profiles via a novel network-assisted approach. Metabolomics 9:904–918

    Article  CAS  Google Scholar 

  28. Li D, Baldwin IT, Gaquerel E (2015) Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. Proc Natl Acad Sci U S A 112:E4147–E4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watrous J, Roach P, Alexandrov T et al (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:E1743–E1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaquerel E, Heiling S, Schoettner M et al (2010) Development and validation of a liquid chromatography-electrospray ionization-time-of-flight mass spectrometry method for induced changes in Nicotiana attenuata leaves during simulated herbivory. J Agric Food Chem 58:9418–9427

    Article  CAS  PubMed  Google Scholar 

  31. Li DP, Heiling S, Baldwin IT et al (2016) Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci USA 113:E7610–E7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heiling S, Khanal S, Barsch A et al (2016) Using the knowns to discover the unknowns: MS-based dereplication uncovers structural diversity in 17-hydroxygeranyllinalool diterpene glycoside production in the Solanaceae. Plant J 85:561–577

    Article  CAS  PubMed  Google Scholar 

  33. Heiling S, Schuman MC, Schoettner M et al (2010) Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu T, Watanabe M, Fernie AR et al (2018) Targeted LC-MS analysis for plant secondary metabolites. Methods Mol Biol 1778:171–181

    Article  CAS  PubMed  Google Scholar 

  35. Smith CA, Want EJ, O’maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  36. Patti GJ, Tautenhahn R, Siuzdak G (2012) Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc 7:508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marbach D, Costello JC, Kuffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B Met 58:267–288

    Google Scholar 

  39. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  40. Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:S7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35:1–22

    Article  Google Scholar 

  43. Wolfender JL, Nuzillard JM, Van Der Hooft JJJ et al (2019) Accelerating metabolite identification in natural product research: toward an ideal combination of LC-HRMS/MS and NMR profiling, in silico databases and chemometrics. Anal Chem 91(1):704–742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.N. acknowledges support by the IMPRS-PMPG program and A.R.F. the support of Max Planck Society. E. G. acknowledges the support by the Deutsche Forschungsgemeinschaft Excellence Initiative to the University of Heidelberg and by the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naake, T., Gaquerel, E., Fernie, A.R. (2020). Annotation of Specialized Metabolites from High-Throughput and High-Resolution Mass Spectrometry Metabolomics. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics