Skip to main content

Synthesis of Antimicrobial Lipopeptides Using the “CLipPA” Thiol-Ene Reaction

  • Protocol
  • First Online:
Peptide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2103))

Abstract

Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology provides a facile method for the lipidation of unprotected peptides containing a free thiol group by using a “click” radical-initiated thiol-ene reaction to effect addition to a vinyl ester. The methodology is highly versatile, leading to high conversion rates while maintaining excellent chemoselectivity and tolerance for a large variety of peptide substrates and functional groups. Herein we describe the simple general procedure for the synthesis of a focused library of bioactive S-lipidated antimicrobial peptides via late-stage derivatization using solution-phase CLipPA lipidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R14–R19. https://doi.org/10.1016/j.cub.2015.11.017

    Article  CAS  PubMed  Google Scholar 

  2. Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425. https://doi.org/10.1016/j.bbamem.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  3. Hover BM, Kim S-H, Katz M, Charlop-Powers Z, Owen JG, Ternei MA, Maniko J, Estrela AB, Molina H, Park S, Perlin DS, Brady SF (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415–422. https://doi.org/10.1038/s41564-018-0110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canepari P, Boaretti M, Lleo MM, Satta G (1990) Lipoteichoic acid as a new target for activity of antibiotics: mode of action of daptomycin (LY146032). Antimicrob Agents Chemother 34:1220–1226. https://doi.org/10.1128/aac.34.6.1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor SD, Palmer M (2016) The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268. https://doi.org/10.1016/j.bmc.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  6. Koh J-J, Lin S, Beuerman RW, Liu S (2017) Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 49:1653–1677. https://doi.org/10.1007/s00726-017-2476-4

    Article  CAS  PubMed  Google Scholar 

  7. Yu YC, Tirrell M, Fields GB (1998) Minimal lipidation stabilizes protein-like molecular architecture. J Am Chem Soc 120:9979–9987. https://doi.org/10.1021/ja981654z

    Article  CAS  Google Scholar 

  8. Hickman DT, Lopez-Deber MP, Ndao DM, Silva AB, Nand D, Pihlgren M, Giriens V, Madani R, St-Pierre A, Karastaneva H, Nagel-Steger L, Willbold D, Riesner D, Nicolau C, Baldus M, Pfeifer A, Muhs A (2011) Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem 286:13966–13976. https://doi.org/10.1074/jbc.M110.186338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bech EM, Pedersen SL, Jensen KJ (2018) Chemical strategies for half-life extension of biopharmaceuticals: lipidation and its alternatives. ACS Med Chem Lett 9:577–580. https://doi.org/10.1021/acsmedchemlett.8b00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gatto E, Mazzuca C, Stella L, Venanzi M, Toniolo C, Pispisa B (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J Phys Chem B 110:22813–22818. https://doi.org/10.1021/jp064580j

    Article  CAS  PubMed  Google Scholar 

  11. Weronski K, Busquets MA, Girona V, Prat J (2007) Influence of lipidation of GBV-C/HGV NS3 (513–522) and (505–514) peptide sequences on its interaction with mono and bilayers. Colloids Surf B Biointerfaces 57:8–16. https://doi.org/10.1016/j.colsurfb.2006.11.028

    Article  CAS  PubMed  Google Scholar 

  12. Powell A, Borg M, Amir-Heidari B, Neary JM, Thirlway J, Wilkinson B, Smith CP, Micklefield J (2007) Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc 129:15182–15191. https://doi.org/10.1021/ja074331o

    Article  CAS  PubMed  Google Scholar 

  13. Ng IS, Ye C, Zhang Z, Lu Y, Jing K (2014) Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng 37:415–423. https://doi.org/10.1007/s00449-013-1007-2

    Article  CAS  PubMed  Google Scholar 

  14. Yang SH, Harris PWR, Williams GM, Brimble MA (2016) Lipidation of cysteine or cysteine-containing peptides using the thiol-ene reaction (CLipPA). Eur J Org Chem 2016:2608–2616. https://doi.org/10.1002/ejoc.201501375

    Article  CAS  Google Scholar 

  15. Wright TH, Brooks AES, Didsbury AJ, Williams GM, Harris PWR, Dunbar PR, Brimble MA (2013) Direct peptide lipidation through thiol-ene coupling enables rapid synthesis and evaluation of self-adjuvanting vaccine candidates. Angew Chem Int Ed Engl 52:10616–10619. https://doi.org/10.1002/anie.201305620

    Article  CAS  PubMed  Google Scholar 

  16. Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA (2017) Peptide lipidation – a synthetic strategy to afford peptide based therapeutics. In: Sunna A, Care A, Bergquist PL (eds) Peptides and peptide-based biomaterials and their biomedical applications. Springer International Publishing, Cham, pp 185–227

    Chapter  Google Scholar 

  17. Williams ET, Harris PWR, Jamaluddin MA, Loomes KM, Hay DL, Brimble MA (2018) Solid-phase thiol-ene lipidation of peptides for the synthesis of a potent CGRP receptor antagonist. Angew Chem Int Ed Engl 57:11640–11643. https://doi.org/10.1002/anie.201805208

    Article  CAS  PubMed  Google Scholar 

  18. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90:369–383. https://doi.org/10.1002/bip.20911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magrone P, Cavallo F, Panzeri W, Passarella D, Riva S (2010) Exploiting enzymatic regioselectivity: a facile methodology for the synthesis of polyhydroxylated hybrid compounds. Org Biomol Chem 8:5583–5590. https://doi.org/10.1039/c0ob00304b

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Brimble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hermant, Y.O., Cameron, A.J., Harris, P.W.R., Brimble, M.A. (2020). Synthesis of Antimicrobial Lipopeptides Using the “CLipPA” Thiol-Ene Reaction. In: Hussein, W., Skwarczynski, M., Toth, I. (eds) Peptide Synthesis. Methods in Molecular Biology, vol 2103. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0227-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0227-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0226-3

  • Online ISBN: 978-1-0716-0227-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics