Skip to main content

Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

MreB proteins are actin homologs present in nonspherical bacteria. They assemble into membrane-associated discrete filamentous structures that exhibit different dynamic behaviors along the bacterial sidewalls. Total internal reflection fluorescence (TIRF) microscopy, a sensitive method for studying molecular events at cell surfaces with high contrast and temporal resolution, is a method of choice to characterize the localization and dynamics of cortical MreB assemblies in vivo. This chapter describes the methods for visualizing fluorescently tagged MreB proteins in live Bacillus subtilis cells. We detail how to (1) grow B. subtilis strains for reproducible TIRF observations, (2) immobilize cells on agarose pads and (3) in CellASIC® microfluidic plates, and (4) acquire TIRF images and time lapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268. https://doi.org/10.1146/annurev.bb.13.060184.001335

    Article  CAS  PubMed  Google Scholar 

  2. Yao Z, Carballido-Lopez R (2014) Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annu Rev Microbiol 68:459–476. https://doi.org/10.1146/annurev-micro-091213-113034

    Article  CAS  PubMed  Google Scholar 

  3. Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-López R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science (New York, NY) 333(6039):225–228. https://doi.org/10.1126/science.1203466

    Article  CAS  Google Scholar 

  4. Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N, Fromion V, Carballido-Lopez R (2017) Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 8:15370. https://doi.org/10.1038/ncomms15370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Billaudeau C, Yao Z, Cornilleau C, Carballido-Lopez R, Chastanet A (2019) MreB forms subdiffraction nanofilaments during active growth in Bacillus subtilis. MBio 10(1):e01879-18. https://doi.org/10.1128/mBio.01879-18

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science (New York, NY) 333(6039):222–225

    Article  CAS  Google Scholar 

  7. Strahl H, Hamoen LW (2010) Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107(27):12281–12286

    Article  CAS  Google Scholar 

  8. Colville K, Tompkins N, Rutenberg AD, Jericho MH (2010) Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir 26(4):2639–2644. https://doi.org/10.1021/la902826n

    Article  CAS  PubMed  Google Scholar 

  9. Katsu T, Tsuchiya T, Fujita Y (1984) Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine. Biochem Biophys Res Commun 122(1):401–406

    Article  CAS  Google Scholar 

  10. Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. John Wiley & Sons, New York

    Google Scholar 

  11. Stevenson K, McVey AF, Clark IBN, Swain PS, Pilizota T (2016) General calibration of microbial growth in microplate readers. Sci Rep 6:38828. https://doi.org/10.1038/srep38828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a Consolidator grant from the European Research Council (ERC COG) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 772178) to R.C.-L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rut Carballido-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cornilleau, C., Chastanet, A., Billaudeau, C., Carballido-López, R. (2020). Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics