Skip to main content

In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Microtubules are non-covalent dynamic polymers essential for the life of all eukaryotic cells. Their dynamic behavior is regulated by a large array of cellular effectors. In vitro microtubule assays have been instrumental in dissecting the mechanism of microtubule-associated proteins. In this chapter, we focus on microtubule-severing enzymes katanin and spastin. They are AAA ATPases that generate internal breaks in microtubules by extracting tubulin dimers out of the microtubule lattice. We present protocols for TIRF microscopy-based assays that were instrumental in proving that these enzymes not only sever microtubules but also remodel the microtubule lattice by promoting the exchange of lattice GDP-tubulin with GTP-tubulin from the soluble pool. This activity can modulate microtubule dynamics and support microtubule-dependent microtubule amplification in the absence of a nucleating factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  Google Scholar 

  2. Carlier M-F (1982) Guanosine-5′-triphosphate hydrolysis and tubulin polymerization. Mol Cell Biochem 47(2):97–113

    Article  CAS  Google Scholar 

  3. Carlier MF, Pantaloni D (1981) Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20(7):1918–1924

    Article  CAS  Google Scholar 

  4. Alfaro-Aco R, Petry S (2015) Building the microtubule cytoskeleton piece by piece. J Biol Chem 290(28):17154–17162. https://doi.org/10.1074/jbc.R115.638452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726. https://doi.org/10.1038/nrm4084

    Article  CAS  PubMed  Google Scholar 

  6. McNally FJ, Roll-Mecak A (2018) Microtubule-severing enzymes: from cellular functions to molecular mechanism. J Cell Biol 217(12):4057–4069. https://doi.org/10.1083/jcb.201612104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vale RD (1991) Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell 64(4):827–839

    Article  CAS  Google Scholar 

  8. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75(3):419–429

    Article  CAS  Google Scholar 

  9. Roll-Mecak A, Vale RD (2005) The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 15(7):650–655. https://doi.org/10.1016/j.cub.2005.02.029

    Article  CAS  PubMed  Google Scholar 

  10. Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 168(4):599–606. https://doi.org/10.1083/jcb.200409058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee S, Diaz Valencia JD, Stewman S, Metz J, Monnier S, Rath U, Asenjo AB, Charafeddine RA, Sosa HJ, Ross JL, Ma A, Sharp DJ (2012) Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle 11(12):2359–2366. https://doi.org/10.4161/cc.20849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang D, Rogers GC, Buster DW, Sharp DJ (2007) Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J Cell Biol 177(2):231–242. https://doi.org/10.1083/jcb.200612011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonbuchner TM, Rath U, Sharp DJ (2010) KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture. Cell Cycle 9(12):2403–2411. https://doi.org/10.4161/cc.9.12.11916

    Article  CAS  PubMed  Google Scholar 

  14. Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A (2018) Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 361(6404):eaau1504. https://doi.org/10.1126/science.aau1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roll-Mecak A, Vale RD (2006) Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays? J Cell Biol 175(6):849–851. https://doi.org/10.1083/jcb.200611149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srayko M, O'Toole ET, Hyman AA, Müller-Reichert T (2006) Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr Biol 16(19):1944–1949

    Article  CAS  Google Scholar 

  17. Sherwood NT, Sun Q, Xue M, Zhang B, Zinn K (2004) Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol 2(12):e429. https://doi.org/10.1371/journal.pbio.0020429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AMC, Mulder BM, Kirik V, Ehrhardt DW (2013) A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342(6163):1245533

    Article  Google Scholar 

  19. Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14(9):2145–2160

    Article  CAS  Google Scholar 

  20. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using muManager software. J Biol Methods 1(2):e10. https://doi.org/10.14440/jbm.2014.36

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ziółkowska NE, Roll-Mecak A (2013) In vitro microtubule severing assays. Methods Mol Biol 1046:323–334. https://doi.org/10.1007/978-1-62703-538-5_19; pmid: 23868597

  22. Zehr E, Szyk A, Piszczek G, Szczesna E, Zuo X, Roll-Mecak A (2017) Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat Struct Mol Biol 24(9):717–725. https://doi.org/10.1038/nsmb.3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, Friel CT, Helenius J, Nitzsche B, Petzold H, Ribbe J, Schaffer E, Stear JH, Trushko A, Varga V, Widlund PO, Zanic M, Howard J (2010) Microtubule dynamics reconstituted in vitro and image by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245

    Article  CAS  Google Scholar 

  24. Vemu A, Garnham CP, Lee D-Y, Roll-Mecak A (2014) Generation of differentially modified microtubules using in vitro enzymatic approaches. Methods Enzymol 540:149–166

    Article  CAS  Google Scholar 

  25. Valenstein ML, Roll-Mecak A (2016) Graded control of microtubule severing by tubulin glutamylation. Cell 164(5):911–921

    Article  CAS  Google Scholar 

  26. Gibbons IR, Fronk E (1979) A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem 254(1):187–196

    CAS  PubMed  Google Scholar 

  27. Severin FF, Sorger PK, Hyman AA (1997) Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Nature 388(6645):888–891. https://doi.org/10.1038/42270

    Article  CAS  PubMed  Google Scholar 

  28. Aumeier C, Schaedel L, Gaillard J, John K, Blanchoin L, Thery M (2016) Self-repair promotes microtubule rescue. Nat Cell Biol 18(10):1054–1064. https://doi.org/10.1038/ncb3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  30. Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F (2010) CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev Cell 19(2):245–258

    Article  CAS  Google Scholar 

  31. Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84(1):37–47

    Article  CAS  Google Scholar 

  32. Weisenberg RC, Borisy GG, Taylor EW (1968) The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7(12):4466–4479

    Article  CAS  Google Scholar 

  33. Borisy GG, Marcum JM, Olmsted JB, Murphy DB, Johnson KA (1975) Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann N Y Acad Sci 253:107–132

    Article  CAS  Google Scholar 

  34. Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93(2):277–287

    Article  CAS  Google Scholar 

Download references

Acknowledgment

A.R.M. is supported by the intramural programs of the National Institute of Neurological Disorders and Stroke (NINDS) and the National, Heart, Lung, and Blood Institute (NHLBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Roll-Mecak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vemu, A., Szczesna, E., Roll-Mecak, A. (2020). In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics