Skip to main content

Expression and Purification of Microtubule-Associated Proteins from HEK293T Cells for In Vitro Reconstitution

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

In vitro reconstitution has been an invaluable tool to elucidate the roles and mechanisms of microtubule-associated proteins (MAPs). Like all biochemical assays, the quality of the proteins is vital for success. In the microtubule field, proteins produced in bacteria and insect cells have been widely used for in vitro reconstitution. Recently, we applied the mammalian HEK293T cell expression system to our research on several MAPs. We find that such system is especially suitable for quick functional studies and can produce active proteins that sometimes are difficult for either bacteria or insect cell expression systems. Here, we provide a detailed protocol to express and purify microtubule-associated proteins from HEK293T cells using a Strep-tag strategy. The method described here can be adopted for preparation of other proteins and protein complexes for reconstitution studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Borisy GG, Taylor EW (1967) The mechanism of action of colchicine: binding of colchincine-3H to cellular protein. J Cell Biol 34(2):525–533. https://doi.org/10.1083/jcb.34.2.525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weisenberg RC, Borisy GG, Taylor EW (1968) The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7(12):4466–4479

    Article  CAS  Google Scholar 

  3. Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177(54):1104–1105

    Article  CAS  Google Scholar 

  4. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225

    Article  CAS  Google Scholar 

  5. Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105(5):2203–2215

    Article  CAS  Google Scholar 

  6. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96(1):69–78. pii: S0092-8674(00)80960-5

    Article  CAS  Google Scholar 

  7. Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378(6557):578–583. https://doi.org/10.1038/378578a0

    Article  CAS  PubMed  Google Scholar 

  8. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75(3):419–429. https://doi.org/10.1016/0092-8674(93)90377-3

    Article  CAS  PubMed  Google Scholar 

  9. Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441(7089):115–119. https://doi.org/10.1038/nature04736

    Article  CAS  PubMed  Google Scholar 

  10. Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450(7172):1100–1105. https://doi.org/10.1038/nature06386

    Article  CAS  PubMed  Google Scholar 

  11. Brouhard GJ (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88

    Article  CAS  Google Scholar 

  12. Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G (2006) The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440(7083):565–569. https://doi.org/10.1038/nature04409

    Article  CAS  PubMed  Google Scholar 

  13. Westermann S, Avila-Sakar A, Wang HW, Niederstrasser H, Wong J, Drubin DG, Nogales E, Barnes G (2005) Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol Cell 17(2):277–290. https://doi.org/10.1016/j.molcel.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  14. Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP (2014) In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33(17):1855–1868. https://doi.org/10.15252/embj.201488792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q, Katrukha EA, Altelaar AF, Heck AJ, Hoogenraad CC, Akhmanova A (2014) Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell 28(3):295–309. https://doi.org/10.1016/j.devcel.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Atherton J, Jiang K, Stangier MM, Luo Y, Hua S, Houben K, van Hooff JJE, Joseph AP, Scarabelli G, Grant BJ, Roberts AJ, Topf M, Steinmetz MO, Baldus M, Moores CA, Akhmanova A (2017) A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 24(11):931–943. https://doi.org/10.1038/nsmb.3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, Heck AJR, Kammerer RA, Steinmetz MO, Akhmanova A (2017) Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol 19(5):480–492. https://doi.org/10.1038/ncb3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goehring A, Lee CH, Wang KH, Michel JC, Claxton DP, Baconguis I, Althoff T, Fischer S, Garcia KC, Gouaux E (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9(11):2574–2585. https://doi.org/10.1038/nprot.2014.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol 463:223–238. https://doi.org/10.1016/S0076-6879(09)63015-9

    Article  CAS  PubMed  Google Scholar 

  20. Kriz A, Schmid K, Baumgartner N, Ziegler U, Berger I, Ballmer-Hofer K, Berger P (2010) A plasmid-based multigene expression system for mammalian cells. Nat Commun 1:120. https://doi.org/10.1038/ncomms1120

    Article  CAS  PubMed  Google Scholar 

  21. Lu P, Bai XC, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SHW, Shi Y (2014) Three-dimensional structure of human gamma-secretase. Nature 512(7513):166–170. https://doi.org/10.1038/nature13567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  Google Scholar 

  23. Massie B, Dionne J, Lamarche N, Fleurent J, Langelier Y (1995) Improved adenovirus vector provides herpes simplex virus ribonucleotide reductase R1 and R2 subunits very efficiently. Biotechnology (NY) 13(6):602–608

    CAS  Google Scholar 

  24. Massie B, Mosser DD, Koutroumanis M, Vitte-Mony I, Lamoureux L, Couture F, Paquet L, Guilbault C, Dionne J, Chahla D, Jolicoeur P, Langelier Y (1998) New adenovirus vectors for protein production and gene transfer. Cytotechnology 28(1–3):53–64. https://doi.org/10.1023/A:1008013211222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611. https://doi.org/10.1371/journal.pone.0010611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmidt T, Skerra A (2015) The Strep-tag system for one-step affinity purification of proteins from mammalian cell culture. Methods Mol Biol 1286:83–95. https://doi.org/10.1007/978-1-4939-2447-9_8

    Article  CAS  PubMed  Google Scholar 

  27. Hooikaas PJ, Martin M, Muhlethaler T, Kuijntjes GJ, Peeters CAE, Katrukha EA, Ferrari L, Stucchi R, Verhagen DGF, van Riel WE, Grigoriev I, Altelaar AFM, Hoogenraad CC, Rudiger SGD, Steinmetz MO, Kapitein LC, Akhmanova A (2019) MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Biol 218(4):1298–1318. https://doi.org/10.1083/jcb.201808065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work is supported by 1000 Youth Talents Program to K.J. and an NSFC grant (31871356) to K.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hua, S., Jiang, K. (2020). Expression and Purification of Microtubule-Associated Proteins from HEK293T Cells for In Vitro Reconstitution. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics