Skip to main content

Measurement of Microtubule Half-Life and Poleward Flux in the Mitotic Spindle by Photoactivation of Fluorescent Tubulin

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

The study of microtubule dynamics is of utmost importance for the understanding of the mechanisms underlying mitotic fidelity. During mitosis, the microtubular cytoskeleton reorganizes to assemble a mitotic spindle necessary for chromosome segregation. Several methods, such as controlled exposure to cold, high pressure, high calcium concentration, or microtubule depolymerizing drugs, have been widely used to evaluate the dynamic properties of specific spindle microtubule populations. However, while these methods offer a qualitative approach that is sufficient to discern differences among specific spindle microtubule populations, they fall short in providing a robust quantitative picture that is sensitive enough to highlight minor differences, for example when comparing spindle microtubule dynamics in different genetic backgrounds. In this chapter we describe a detailed methodology to measure spindle microtubule dynamics using photoactivation of fluorescently tagged tubulin in living cells. This methodology allows the quantitative discrimination of the turnover of specific microtubule populations (e.g., kinetochore vs. non-kinetochore microtubules), as well as determination of microtubule poleward flux rates. These two conspicuous features of metazoan spindles must be tightly regulated to allow, on the one hand, efficient error correction, and on the other hand the satisfaction of the spindle assembly checkpoint that controls mitotic fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–242

    Article  CAS  Google Scholar 

  2. Mitchison T (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109(2):637–652

    Article  CAS  Google Scholar 

  3. Belmont L, Hyman A, Sawin K, Mitchison T (1990) Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62(3):579–589

    Article  CAS  Google Scholar 

  4. Piehl M, Cassimeris L (2003) Organization and dynamics of growing microtubule plus ends during early mitosis. Mol Biol Cell 14(3):916–925

    Article  CAS  Google Scholar 

  5. Bakhoum SF, Compton DA (2012) Kinetochores and disease: keeping microtubule dynamics in check. Curr Opin Cell Biol 24(1):64–70

    Article  CAS  Google Scholar 

  6. Matos I, Maiato H (2011) Prevention and correction mechanisms behind anaphase synchrony: implications for the genesis of aneuploidy. Cytogenet Genome Res 133(2–4):243–253

    Article  CAS  Google Scholar 

  7. Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131(3):721–734

    Article  CAS  Google Scholar 

  8. Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore–microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16(1):57

    Article  CAS  Google Scholar 

  9. Waterman-Storer CM, Desai A, Bulinski JC, Salmon E (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8(22):1227–S1221

    Article  CAS  Google Scholar 

  10. Carminati JL, Stearns T (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138(3):629–641

    Article  CAS  Google Scholar 

  11. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929

    Article  Google Scholar 

  12. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  CAS  Google Scholar 

  13. Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38(10):2852–2864

    Article  CAS  Google Scholar 

  14. Nienhaus K, Nienhaus GU (2014) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 43(4):1088–1106

    Article  CAS  Google Scholar 

  15. Renz M, Lippincott-Schwartz J (2014) Optical highlighters: applications to cell biology. In: Day RN, Davidson MW (eds) The fluorescent protein revolution, 1st edn. CRC Press Taylor & Francis, pp 197–224

    Google Scholar 

  16. Wadsworth P, Salmon E (1986) Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching. J Cell Biol 102(3):1032–1038

    Article  CAS  Google Scholar 

  17. Krafft G, Cummings R, Dizio J, Furukawa R, Brvenik L, Sutton W, Ware B (1986) Fluorescence photoactivation and dissipation (FPD). In: Nucleocytoplasmic transport. Springer, Berlin, pp 35–52

    Google Scholar 

  18. Vigers G, Coue M, McIntosh J (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107(3):1011–1024

    Article  CAS  Google Scholar 

  19. Pereira AJ, Maiato H (2010) Improved kymography tools and its applications to mitosis. Methods 51(2):214–219

    Article  CAS  Google Scholar 

  20. Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22(7):638–644

    Article  CAS  Google Scholar 

  21. Orr B, Talje L, Liu Z, Kwok BH, Compton DA (2016) Adaptive resistance to an inhibitor of chromosomal instability in human cancer cells. Cell Rep 17(7):1755–1763

    Article  CAS  Google Scholar 

  22. Gorbsky GJ (2013) Cohesion fatigue. Curr Biol 23(22):R986–R988. https://doi.org/10.1016/j.cub.2013.08.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of H.M. is funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 681443) and FLAD Life Science 2020. H.G. holds a Ph.D. fellowship from Fundação para a Ciência e a Tecnologia (SFRH/BD/141066/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder Maiato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Girão, H., Maiato, H. (2020). Measurement of Microtubule Half-Life and Poleward Flux in the Mitotic Spindle by Photoactivation of Fluorescent Tubulin. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics