Skip to main content

Ultrastructural Analysis of Microtubule Ends

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Microtubules can be detected in light microscopes, but the limited resolution of these instruments means that the polymers appear as lines whose width is defined by the diffraction of light. Much important work on microtubule dynamics has been accomplished by light microscopy, but the details of microtubule end structure are not accessible in such studies. Slight variations in fluorescence intensity, etc. have been used to comment on the structure of dynamic ends, and the combination of light microscopy with laser tweezers has provided insight into aspects of microtubule elongation. However, for views that reveal structural details of the pathways for microtubule growth and shortening, electron microscopy has been of great value. Here, we describe methods for using electron microscopes to look at the ends of microtubules as they grow and shrink, both in vivo and in vitro. The key problems to be overcome for ultrastructural study of microtubule dynamics are those of reliable sample preparation. Dynamic microtubules are labile and can therefore be modified by preparative methods. Our chapter follows the premise that rapid freezing, which converts sample water into vitreous ice, is the best approach for sample preparation. Therefore, all of the methods described involve finding optimal conditions for sample vitrification, and then getting the frozen sample into a form suitable for electron microscopy. We also posit that the end of a microtubule must be considered in three dimensions, so we employ electron tomography as a way to get the necessary information. The methods described for the study of microtubules in cells employ rapid freezing, freeze-substitution fixation, plastic embedding, serial sectioning, and tomography of stained samples. The methods for following microtubule growth in vitro employ sample preparation on holy grids, blotting, and plunge-freezing, followed by electron cryo-tomography. Quantification of structure from both approaches is accomplished by segmentation and analysis of graphic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonald KL, Morphew M, Verkade P, Muller-Reichert T (2007) Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol Biol 369:143–173. https://doi.org/10.1007/978-1-59745-294-6_8

    Article  CAS  PubMed  Google Scholar 

  2. Dubochet J (2007) The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol 79:7–21. https://doi.org/10.1016/S0091-679X(06)79001-X

    Article  CAS  PubMed  Google Scholar 

  3. Chretien D, Fuller SD, Karsenti E (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J Cell Biol 129:1311–1328

    Article  CAS  Google Scholar 

  4. Donohoe BS, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162. https://doi.org/10.1016/j.ymeth.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  5. Hoog JL, Huisman SM, Sebo-Lemke Z et al (2011) Electron tomography reveals a flared morphology on growing microtubule ends. J Cell Sci 124:693–698. https://doi.org/10.1242/jcs.072967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  Google Scholar 

  7. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  CAS  Google Scholar 

  8. VandenBeldt KJ, Barnard RM, Hergert PJ et al (2006) Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr Biol 16:1217–1223. https://doi.org/10.1016/j.cub.2006.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henderson LD, Beeby M (2018) High-throughput Electron Cryo-tomography of protein complexes and their assembly. Methods Mol Biol 1764:29–44. https://doi.org/10.1007/978-1-4939-7759-8_2

    Article  CAS  PubMed  Google Scholar 

  10. Oikonomou CM, Jensen GJ (2017) Cellular electron cryotomography: toward structural biology in situ. Annu Rev Biochem 86:873–896. https://doi.org/10.1146/annurev-biochem-061516-044741

    Article  CAS  PubMed  Google Scholar 

  11. Hyman A, Drechsel D, Kellogg D et al (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485

    Article  CAS  Google Scholar 

  12. Widlund PO, Podolski M, Reber S et al (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401. https://doi.org/10.1091/mbc.E12-06-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergen LG, Kuriyama R, Borisy GG (1980) Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J Cell Biol 84:151–159

    Article  CAS  Google Scholar 

  14. Johnson KA, Borisy GG (1977) Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol 117:1–31

    Article  CAS  Google Scholar 

  15. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  Google Scholar 

  16. Chretien D, Kenney JM, Fuller SD, Wade RH (1996) Determination of microtubule polarity by cryo-electron microscopy. Structure 4:1031–1040

    Article  CAS  Google Scholar 

  17. Wade RH, Chrétien D, Job D (1990) Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J Mol Biol 212:775–786. https://doi.org/10.1016/0022-2836(90)90236-F

    Article  CAS  PubMed  Google Scholar 

  18. Atherton J, Jiang K, Stangier MM et al (2017) A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 24:931–943. https://doi.org/10.1038/nsmb.3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vemu A, Atherton J, Spector JO et al (2016) Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem 291:12907–12915. https://doi.org/10.1074/jbc.C116.731133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sale WS, Gibbons IR (1979) Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella. J Cell Biol 82:291–298

    Article  CAS  Google Scholar 

  21. Gibson TM, Asai DJ (2000) Isolation and characterization of 22S outer arm dynein from Tetrahymena cilia. Methods Cell Biol 62:433–440

    Article  CAS  Google Scholar 

  22. Porter ME, Power J, Dutcher SK (1992) Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms. J Cell Biol 118:1163–1176

    Article  CAS  Google Scholar 

  23. Nicastro D, Schwartz C, Pierson J et al (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948. https://doi.org/10.1126/science.1128618

    Article  CAS  Google Scholar 

  24. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51. https://doi.org/10.1016/j.jsb.2005.07.007

    Article  PubMed  Google Scholar 

  25. Frangakis AS, Hegerl R (2001) Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135:239–250. https://doi.org/10.1006/jsbi.2001.4406

    Article  CAS  PubMed  Google Scholar 

  26. McIntosh JR, O’Toole E, Morgan G et al (2018) Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. J Cell Biol 217:2691–2708. https://doi.org/10.1083/jcb.201802138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352. https://doi.org/10.1006/jsbi.1997.3919

    Article  CAS  PubMed  Google Scholar 

  28. Chen M, Dai W, Sun SY et al (2017) Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14:983–985. https://doi.org/10.1038/nmeth.4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The development of these methods was supported in part by GM033787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richard McIntosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Richard McIntosh, J., O’Toole, E., Page, C., Morgan, G. (2020). Ultrastructural Analysis of Microtubule Ends. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics