Skip to main content

Detection of Microtubule Nucleation Hotspots at the Golgi

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Cell polarization is important for multiple physiological processes. In motile cells, microtubules (MTs) are organized as a polarized array, which is to a large extent comprised of Golgi-derived MTs (GDMTs), which asymmetrically extend toward the cell front. We have recently found that GDMT asymmetry is based on a nonrandom positioning of spatially restricted nucleation hotspots, where MTs form in a cooperative manner. Here, we summarize methods used for GDMT identification including microtubule regrowth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescent MT plus-end-tracking proteins (+TIPs) in living cells, and subsequent detection of those GDMTs that originate from the nucleation hotspots. These approaches can be used for quantification of the spatial distribution of MT nucleation events associated with the Golgi or another large structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinogradova T, Miller PM, Kaverina I (2009) Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8(14):2168–2174. https://doi.org/10.4161/cc.8.14.9074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11(9):1069–1080. https://doi.org/10.1038/ncb1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vinogradova T, Paul R, Grimaldi AD, Loncarek J, Miller PM, Yampolsky D, Magidson V, Khodjakov A, Mogilner A, Kaverina I (2012) Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Mol Biol Cell 23(5):820–833. https://doi.org/10.1091/mbc.E11-06-0550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12(6):917–930. https://doi.org/10.1016/j.devcel.2007.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yalgin C, Ebrahimi S, Delandre C, Yoong LF, Akimoto S, Tran H, Amikura R, Spokony R, Torben-Nielsen B, White KP, Moore AW (2015) Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat Neurosci 18(10):1437–1445. https://doi.org/10.1038/nn.4099

    Article  CAS  PubMed  Google Scholar 

  6. Zhu X, Hu R, Brissova M, Stein RW, Powers AC, Gu G, Kaverina I (2015) Microtubules negatively regulate insulin secretion in pancreatic beta cells. Dev Cell 34(6):656–668. https://doi.org/10.1016/j.devcel.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ori-McKenney KM, Jan LY, Jan YN (2012) Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76(5):921–930. https://doi.org/10.1016/j.neuron.2012.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28(8):1016–1028. https://doi.org/10.1038/emboj.2009.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanders A, Chang K, Zhu X, Thoppil RJ, Holmes WR, Kaverina I (2017) Nonrandom gamma-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi. Mol Biol Cell 28(23):3181–3192. https://doi.org/10.1091/mbc.E17-06-0425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piehl M, Tulu US, Wadsworth P, Cassimeris L (2004) Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci U S A 101(6):1584–1588. https://doi.org/10.1073/pnas.0308205100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komarova YA, Vorobjev IA, Borisy GG (2002) Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 115(Pt 17):3527–3539

    CAS  PubMed  Google Scholar 

  12. Deora AA, Diaz F, Schreiner R, Rodriguez-Boulan E (2007) Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture. Traffic 8(10):1304–1312. https://doi.org/10.1111/j.1600-0854.2007.00617.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kodani A, Sutterlin C (2008) The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 19(2):745–753. https://doi.org/10.1091/mbc.e07-08-0847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhai Y, Borisy GG (1994) Quantitative determination of the proportion of microtubule polymer present during the mitosis-interphase transition. J Cell Sci 107(Pt 4):881–890

    CAS  PubMed  Google Scholar 

  15. Zhu X, Kaverina I (2011) Quantification of asymmetric microtubule nucleation at subcellular structures. Methods Mol Biol 777:235–244. https://doi.org/10.1007/978-1-61779-252-6_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200. https://doi.org/10.1016/B978-0-12-391857-4.00009-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Institutes of Health (NIH) grant 5T32 CA 119925-10 and American Heart Association (AHA) POST33990271 (to R.J.T.), AHA 17POST32650000 (to A.A.W.M.S.), NIH R01GM078373, NIH R35-GM127098, and NIH R01-DK106228 (to I.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kaverina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thoppil, R.J., Sanders, A.A.W.M., Kaverina, I. (2020). Detection of Microtubule Nucleation Hotspots at the Golgi. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics