Skip to main content

Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Abstract

In this chapter, the properties of tailor-made anionic exchanger resins based on films of large polyethylenimine polymers (e.g., molecular weight 25,000) as supports for strong but reversible immobilization of proteins are shown. The polymer is completely coated, via covalent immobilization, the surface of different porous supports. Proteins can interact with this polymeric bed, involving a large percentage of the protein surface in the adsorption. Different enzymes have been very strongly adsorbed on these supports, retaining enzyme activities. On the other hand, adsorption is very strong and the derivatives may be used under a wide range of pH and ionic strengths. These supports may be useful even to stabilize multimeric enzymes, by involving several enzyme subunits in the immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosevear A (1984) Immobilized biocatalysts: a critical review. J Chem Technol Biotechnol 34:127–150

    Article  Google Scholar 

  2. Royer GP (1980) Immobilized enzymes as catalysts. Catal Rev 22:29–73

    Article  CAS  Google Scholar 

  3. Klivanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727

    Article  Google Scholar 

  4. Hartmeier W (1985) Immobilized biocatalysts: from simple to complex systems. Trends Biotechnol 3:149–153

    Article  CAS  Google Scholar 

  5. Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes and cells. Chem Eng Prog 45:81–89

    Google Scholar 

  6. Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  CAS  Google Scholar 

  7. Chibata I, Tosa T, Sato T (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal 37:1–24

    Article  CAS  Google Scholar 

  8. Gupta MN (1991) Thermostabilization of proteins. Biotechnol Appl Biochem 14:1–11

    Google Scholar 

  9. Mateo C, Abian O, Fernández-Lafuente R, Guisán JM (2000) Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support Polyethylenimine supports. Biotechnol Bioeng 7:98–105

    Article  Google Scholar 

  10. Pessela BCC, Fernández-Lafuente R, Fuentes M, Vián A, García JL, Carrascosa AV, Mateo C, Guisán JM (2003) Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEI- coated sepabeads. Enzym Microb Technol 32:369–374

    Article  CAS  Google Scholar 

  11. Fuentes M, Maquiese J, Pessela BCC, Abian A, Fernández-Lafuente R, Mateo C, Guisán JM (2004) New cationic exchanger support for reversible immobilization of proteins. Biotechnol Prog 20:284–288

    Article  CAS  Google Scholar 

  12. Fuentes M, Pessela BCC, Maquiese JV, Ortiz C, Segura RL, Palomo JM, Abian O, Torres R, Mateo C, Fernández-Lafuente R, Guisán JM (2004) Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate- dextran. Biotechnol Prog 20:1134–1139

    Article  CAS  Google Scholar 

  13. Virgen-Ortíz JJ, Dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R (2017) Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 5(36):7461–7490

    Article  Google Scholar 

  14. Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353(16):2885–2904

    Article  CAS  Google Scholar 

  15. Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20(5-6):801–821

    Article  CAS  Google Scholar 

  16. Batista-Viera F, Barbieri M, Ovsejevi K, Manta C, Carlsson J (1991) A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiosulfonate groups. Appl Biochem Biotechnol 31:175–195

    Article  CAS  Google Scholar 

  17. Batista-Viera F, Brena B, Luna B (1988) Reversible immobilization of soybean amylase on phenylboronate-agarose. Biotechnol Bioeng 31:711–713

    Article  CAS  Google Scholar 

  18. Brena B, Ovsejevi K, Luna B, Batista-Viera F (1993) Thiolation and reversible immobilization of sweet potato amylase on thiosulfonate agarose. J Mol Catal 84:381–390

    Article  CAS  Google Scholar 

  19. Chibata I, Tosa T (1976) Industrial applications of immobilized enzymes and immobilized microbial cells. In: Applied biochemistry and bioengineering: immobilized enzyme principles, vol 1. Wingard, Katchalski, Goldstein, London, pp 239–260

    Google Scholar 

  20. Torres R, Pessela BCC, Mateo C, Ortiz C, Fuentes M, Guisán JM, Fernández-Lafuente R (2004) Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnol Prog 20:1297–1300

    Article  CAS  Google Scholar 

  21. Tammi M, Ballou L, Taylor A, Ballou C (1987) Effect of glycosylation on yeast invertase oligomer stability. J Biol Chem 262:4395–4401

    CAS  PubMed  Google Scholar 

  22. Chu FK, Watorek W, Maley F (1983) Factors affecting the oligomeric structure of yeast external invertase. Arch Biochem Biophys 223:543–555

    Article  CAS  Google Scholar 

  23. Reddy AV, MacColl R, Maley F (1990) Effect of oligosaccharides on oligomeric structures of external, internal and deglycosylated invertase. Biochemistry 29:2482–2487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Fernandez-Lafuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mateo, C. et al. (2020). Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics