Skip to main content

Immobilization of Microalgae

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

Several microalgae synthesize metabolites of great commercial interest. Microalgae also act as filters for wastewater N and P, heavy metals, and xenobiotic compounds. However, the cost-effective harvesting of microalgae is one of the major bottlenecks limiting the microalgal biomass applications. In this context, immobilization of algal cells has been proposed for circumventing the harvest problem as well as retaining the high-value algal biomass for further processing. In recent years, innovative approaches have been employed in the field of coimmobilization and microencapsulation, which have proved the superiority of immobilized cells over the free cells. Further, the development in the field of biosensor technology with immobilized microalgae presents an early warning device to monitor pollutants in natural waters. This chapter reviews the various applications of immobilized microalgae and addresses the specific methods concerning the production of coimmobilized beads and the protocol for construction of optical algal biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipkin Y (1985) Outdoor cultivation of sea vegetables. Plant Soil 89:159–183

    Article  Google Scholar 

  2. Avila M, Seguel M (1993) An overview of seaweed resources in Chile. J Appl Phycol 5:133–139

    Article  Google Scholar 

  3. Merrill JE (1993) Development of Nori markets in the Western World. J Appl Phycol 5:149–154

    Article  Google Scholar 

  4. Sahoo D, Tang X, Yarish C (2002) Porphyra- the economic seaweed as a new experimental system. Curr Sci 83:1313–1316

    Google Scholar 

  5. Martinez MR, Palacpac NQ, Guevarra HT, Boussiba S (1995) Production of indigenous nitrogen fixing blue-green algae in paddy fields of the Philippines. In: Thirakhupt V, Boonakijjinda V (eds) Mass cultures of Microalgae. Proceedings of the Research Seminar and Workshop, Silpakorn University, Thailand, November 18–23, 1991, pp 51–60

    Google Scholar 

  6. Borowitzka LJ, Borowitzka MA (1990) Commercial production of β- carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  7. Belay A, Ota Y, Miyakawa K, Simamatsu H (1994) Production of high quality Spirulina at Earthrise Farms. In: Phang SM, Lee K, Borowitzka MM, Whitton BA (eds) Algal biotechnology in the Asia–Pacific Region. University of Malay Press, Kuala Lumpur, pp 92–102

    Google Scholar 

  8. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laliberte G, Proulx D, De Pauw N, de la Noue J (1994) Algal technology in wastewater treatment. In: Rai LC, Gaur JP, Soeder CJ (eds) Algae and water pollution. E. Schweizerbart’sche Verlagsbuchhanlung, Stuttgart, Germany, pp 283–302

    Google Scholar 

  10. Cohen Z (1999) Chemicals from microalgae. Taylor & Francis Ltd, London, UK, p 419

    Google Scholar 

  11. Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press Inc., Boca Raton, pp 245–263

    Google Scholar 

  12. Mohn FH (1988) Harvesting of microalgal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, NY, pp 395–414

    Google Scholar 

  13. Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, NY, pp 305–328

    Google Scholar 

  14. Bosma R, Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  15. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  16. Brandenberger H, Widmer F (1998) A new multinozzle encapsulation/immobilization system to produce uniform beads of alginate. J Biotechnol 63:73–80

    Article  CAS  Google Scholar 

  17. de-Bashan LE, Hernnandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Google Scholar 

  18. Naessens M, Leclerc J-C, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185

    Article  CAS  PubMed  Google Scholar 

  19. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209

    Article  CAS  PubMed  Google Scholar 

  20. Vedrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole- cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  CAS  PubMed  Google Scholar 

  21. Chouteau C, Dzyadevych S, Chovelon J-M, Durrieu C (2004) Development of novel conductometric biosensors based on immobilized whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096

    Article  CAS  PubMed  Google Scholar 

  22. Kayno H, Karube I, Matsunaga T, Suzuki S, Nakayama O (1981) A photochemical fuel cell system using Anabaena N-7363. Eur J Microbiol Biotechnol 12:1–5

    Article  Google Scholar 

  23. Brouers M, Hall DO (1986) Ammonia and hydrogen production by immobilized cyanobacteria. J Biotechnol 3:307–321

    Article  CAS  Google Scholar 

  24. Bailliez C, Largeau C, Casadevall E (1985) Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl Microbiol Biotechnol 23:99–105

    CAS  Google Scholar 

  25. Santos-Rosa F, Galvan F, Vega JM (1989) Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: a reactor feasibility study. Appl Microbiol Biotechnol 32:285–290

    Article  CAS  Google Scholar 

  26. Vilchez C, Galvan F, Vega JM (1991) Glycolate photoproduction by free and alginate-entrapped cells of Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 35:716–719

    Article  CAS  Google Scholar 

  27. Leon R, Galvan F (1995) Glycerol photoproduction by free and calcium- entrapped cells of Chlamydomonas reinhardtii. J Biotechnol 42:61–67

    Article  CAS  Google Scholar 

  28. Scholz W, Galvan F, de la Rosa FF (1995) The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction: comparison between free and immobilized cells and thylakoids for energy conversion efficiency. Sol Ener Mat Sol Cells 39:61–69

    Article  CAS  Google Scholar 

  29. Roncel M, Navarro JA, de la Rosa MA (1989) Coupling of solar energy to hydrogen peroxide production in the cyanobacterium Anacystis nidulans. Appl Environ Microbiol 55:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morales I, de la Rosa FF (1992) Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: a way to solar energy conversion. Sol Ener 49:41–46

    Article  CAS  Google Scholar 

  31. Rossignol N, Lebeau T, Jaouen P, Robert JM (2000) Comparision of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by marine diatoms. Bioprocess Eng 23:495–501

    Article  CAS  Google Scholar 

  32. Lebeau T, Gaudin P, Moan R, Robert J-M (2002) A new photobioreactor for continuous marennin production with a marine diatom: influence of light intensity and the immobilized-cell matrix (alginate beads or agar layer). Appl Microbiol Biotechnol 59:153–159

    Article  CAS  PubMed  Google Scholar 

  33. Singh Y (2003) Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J Microbiol Biotechnol 13:687–691

    CAS  Google Scholar 

  34. Jeanfils J, Thomas D (1986) Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl Microbiol Biotechnol 24:417–422

    Article  CAS  Google Scholar 

  35. Megharaj M, Pearson HW, Venkateswarlu K (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzym Microb Technol 14:656–658

    Article  CAS  Google Scholar 

  36. Robinson PK (1995) Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella. Biotechnol Lett 17:659–662

    Article  CAS  Google Scholar 

  37. Urrutia I, Serra JL, Lama MJ (1995) Nitrate removal from water by Senedesmus obliquus immobilized in polymeric foams. Enzym Microb Technol 17:200–205

    Article  CAS  Google Scholar 

  38. Rai LC, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114

    Article  CAS  PubMed  Google Scholar 

  39. Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9:196–201

    Article  CAS  PubMed  Google Scholar 

  40. Mallick N, Rai LC (1994) Removal of inorganic ions from wastewater by immobilized microalgae. World J Microbiol Biotechnol 10:439–443

    Article  CAS  PubMed  Google Scholar 

  41. Vilchez C, Vega JM (1994) Nitrate uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl Microbiol Biotechnol 41:137–141

    Article  CAS  Google Scholar 

  42. Garbisu C, Hall DO, Serra JL (1993) Removal of phosphate by foam- immobilized Phormidium laminosum. J Chem Technol Biotechnol 57:181–189

    Article  CAS  Google Scholar 

  43. Kaya VM, Picard G (1995) The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient stravation in air at 100% relative humidity. Biotechnol Bioeng 46:459–464

    Article  CAS  PubMed  Google Scholar 

  44. Kaya VM, Goulet J, de la Noüe J, Picard G (1996) Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzym Microb Technol 18:550–554

    Article  CAS  Google Scholar 

  45. Robinson PK (1998) Immobilized algal technology for wastewater treatment purposes. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer-verlag & Landes Bioscience, New York, pp 1–16

    Google Scholar 

  46. Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate removal from water by Phormidium laminosum immobilized on hallow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468

    Article  CAS  Google Scholar 

  47. de- Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 48:514–521

    Article  CAS  PubMed  Google Scholar 

  48. Brierley JA, Brierley CL, Goyak GM (1986) AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. In: Lawrences RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 291–304

    Google Scholar 

  49. Wilkinson SC, Goulding KH, Robinson PK (1990) Mercury removal by immobilized algae in batch culture sytems. J Appl Phycol 2:223–230

    Article  Google Scholar 

  50. Darnall DW (1991) Removal and recovery of heavy metal ions from wastewaters using a new biosorbents: AlgaSORB. Innov Hazard Waste Treat Technol Ser 3:65–72

    CAS  Google Scholar 

  51. da Costa ACA, Leite SFG (1991) Metal biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 13:559–562

    Article  Google Scholar 

  52. Granham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770

    Article  Google Scholar 

  53. Avery SV, Codd GA, Gadd GM (1993) Salt-stimulation of caesium accumulation in the euryhaline green microalga, Chlorella salina: potential relevance to the development of a biological Cs-removal process. J Gen Microbiol 139:2239–2244

    Article  CAS  Google Scholar 

  54. Robinson PK, Wilkinson SC (1994) Removal of aqueous mercury and phosphate by gel-entrapped Chlorella in packed-bed reactors. Enzym Microb Technol 16:802–807

    Article  CAS  Google Scholar 

  55. Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63:115–121

    Article  CAS  Google Scholar 

  56. Torresdey-Gardea JL, Arenas JL, Francisco NMC, Tiemann KJ, Webb R (1998) Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J Hazard Subs Res 1:1–18

    Google Scholar 

  57. Tam NFY, Wong YS, Simpson CG (1998) Removal of copper by free and immobilized microalga, Chlorella vulgaris. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer-Verlag & Landes Bioscience, New York, NY, pp 17–35

    Chapter  Google Scholar 

  58. Travieso L, Canizares RO, Borja R, Benitez F, Dominuez AR, Dupeyron R, Valiente YV (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151

    Article  CAS  PubMed  Google Scholar 

  59. Singh R, Prasad BB (2000) Trace metal analysis: selective sample (Copper II) enrichment on an AlgaSORB column. Process Biochem 35:897–905

    Article  CAS  Google Scholar 

  60. Moreno-Garrido I, Codd GA, Gadd GM, Lubian LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc Marin 28:107–119

    Article  CAS  Google Scholar 

  61. Akhtar N, Saeed A, Iqbal M (2003a) Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresour Technol 88:163–165

    Article  CAS  PubMed  Google Scholar 

  62. Akhtar N, Iqbal J, Iqbal M (2003b) Microalgal-luffa sponge immobilized disc: a new efficient biosorbent for the removal of Ni (II) from aqueous solution. Lett Appl Microbiol 37:149–153

    Article  CAS  PubMed  Google Scholar 

  63. Volesky B, Prasetyo I (1994) Cadmium removal in a biosorption column. Biotechnol Bioeng 43:1010–1015

    Article  CAS  PubMed  Google Scholar 

  64. Pradhan S, Singh S, Rai LC, Parker DL (1998) Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J Microbiol Biotechnol 8:53–60

    Google Scholar 

  65. Parker DL, Rai LC, Mallick N, Rai PK, Kumar HD (1998) Effect of cellular metabolism and viability on metal ion accumulation by cultured biomass from a bloom of the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 64:1545–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilkstrom P, Swajcer E, Brodelius P, Nilsson P, Mosbach K (1982) Formation of α-keto acids from amino acids using immobilized bacteria and algae. Biotechnol Lett 4:153–158

    Article  Google Scholar 

  67. Trevan MD, Mak AL (1988) Immobilized algae and their potential for use as biocatalysts. Trends Biotechnol 6:68–73

    Article  CAS  Google Scholar 

  68. Joo D-S, Cho M-G, Park J-H, Kwak J-K, Han Y-H, Bucholz R (2001) New strategy for the cultivation of microalgae using microencapsulation. J Microencapsul 18:567–576

    Article  CAS  PubMed  Google Scholar 

  69. Corbesier P, Van Der Lelie D, Borremans B, Provoost A, De Lorenzo V, Brown NL, Lloyd JR, Csorgi E, Johansson G, Mattiasson B (1999) Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Article  Google Scholar 

  70. Kim J-H, Cho HJ, Ryu S-E, Choi M-U (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Mr. Laxuman Sharma and Mr. Akhilesh Kumar Singh for their kind technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupama Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mallick, N. (2020). Immobilization of Microalgae. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics